

Controlador Lógico Programável

Manual Rev. 2.30 Agosto/2006

Ref.3-053.230

Este manual não pode ser reproduzido, total ou parcialmente, sem autorização por escrito da Atos.

Seu conteúdo tem caráter exclusivamente técnico/informativo e a **Atos** se reserva no direito, sem qualquer aviso prévio, de alterar as informações deste documento.

Termo de Garantia

Sistema de Qualidade Certificado ISO 9001 desde 1996, com foco na Satisfação do Cliente

A **Atos Automação Industrial LTDA.** assegura ao comprador deste produto, garantia contra qualquer defeito de material ou de fabricação, que nele apresentar no prazo de 360 dias contados a partir da emissão da nota fiscal de venda.

A **Atos Automação Industrial LTDA.** restringe sua responsabilidade à substituição de peças defeituosas, desde que o critério de seu Departamento de Assistência Técnica, se constate falha em condições normais de uso. A garantia não inclui a troca gratuita de peças ou acessórios que se desgastem naturalmente com o uso, cabos, chaves, conectores externos e relés. A garantia também não inclui fusível, baterias e memórias regraváveis tipo EPROM.

A **Atos Automação Industrial LTDA.** declara a garantia nula e sem efeito se este produto sofrer qualquer dano provocado por acidentes, agentes da natureza, uso em desacordo com o manual de instruções, ou por ter sido ligado à rede elétrica imprópria, sujeita a flutuações excessivas, ou com interferência eletromagnética acima das especificações deste produto. A garantia será nula se o equipamento apresentar sinais de ter sido consertado por pessoa não habilitada e se houver remoção e/ou alteração do número de série ou etiqueta de identificação.

A **Atos Automação Industrial LTDA.** somente obriga-se a prestar os serviços referidos neste termo de garantia em sua sede em São Paulo - SP, portanto, compradores estabelecidos em outras localidades serão os únicos responsáveis pelas despesas e riscos de transportes (ida e volta).

Serviço de Suporte Atos

A **Atos** conta com uma equipe de engenheiros e representantes treinados na própria fábrica e oferece a seus clientes um sistema de trabalho em parceria para especificar, configurar e desenvolver software usuário e soluções em automação e presta serviços de aplicações e start-up.

A **Atos** mantém ainda o serviço de assistência técnica em toda a sua linha de produtos, que é prestado em suas instalações.

Com o objetivo de criar um canal de comunicação entre a **Atos** e seus usuários, criamos um serviço denominado **Central de Atendimento Técnico**. Este serviço centraliza as eventuais dúvidas e sugestões, visando a excelência dos produtos e serviços comercializados pela **Atos**.

Central de Atendimento Técnico

De Segunda a Sexta-feira Das 7:30 às 12:00 h e das 13:00 às 17:30 h Telefone: 55 11 5547 7411 E-mail: suportec@atos.com.br

Para contato com a Atos utilize o endereço e telefones mostrados na primeira página deste Manual.

Índice

1. INTRODUÇÃO	
 Configurações Mínimas para Rodar o WinSUP 2 Configurações Recomendadas 	12 12
2. COMPONENTES DA SÉRIE	
• Descrição Geral dos Módulos	13
• Cabos para IHMs (frontais)	15
Acessórios	16
3. CARACTERÍSTICAS DA SÉRIE MPC4004	
Características Gerais do MPC4004	
Capacidade Máxima de Configuração	
Conceitos Basicos do Mapeamento de Memoria	
Módulos de Frocessaniento Módulos de Fontes de Alimentação	
Módulos de Expansão Digital	22
Módulo Multiplex	
Módulos de Expansão E / S Analógicas	
Módulos Analógicos Compactos (MAC)	
Módulos de Leitura de Temperatura	
Módulos de Contagem Rápida	
Módulos Conversores RS232/RS485 Isolados	
Módulos Amplificadores para Válvula Proporcional Interfaces Homem Máquina (IHM)	
• Especificações Elétricas	
Entradas Digitais (Corrente Contínua)	
Saídas Digitais (Corrente Contínua)	
Entradas Digitais (Corrente Alternada)	
Saídas Digitais (Corrente Alternada)	
Módulo Multiplex	
l'emperatura	
Entradas e Saldas Analogicas	
Modulo Conversor R5232/R5485 Isolado	
Módulo de Energia 4004 45	
Fontes de Alimentação (acessórios)	
• Configuração dos Módulos	
Módulo de Processamento	
Entrada Analógica	
Saída Analógica	
Módulo Contagem Rápida	
Modulos Conversores KS232/KS485	
IVIOUUIO SIAVE DE COMUNICAÇÃO	
oumpers de Endereçamento	

MÓDULOS DE ALIMENTAÇÃO	38 10
	40
MÓDULOS DE PROCESSAMENTO4	
MÓDULOS DE EXPANSÃO DIGITAL (CORRENTE CONTÍNUA)	41
MÓDULOS DE EXPANSÃO DIGITAL (Entrada Digital tipo "N" ou "P" e saída a Relé)4	46
MÓDULOS DE EXPANSÃO DIGITAL (CORRENTE ALTERNADA)	48
MÓDULO MULTIPLEX	49
MÓDULOS DE EXPANSÃO ANALÓGICA	50
MÓDULOS ANALÓGICOS COMPACTOS – MAC	52
MÓDULOS DE LEITURA DE TEMPERATURA	54
MÓDULOS DE CONTAGEM RÁPIDA	57
MÓDULO CONVERSOR RS232/RS485 ISOLADO	58
MÓDULO CONVERSOR ETHERNET / SERIAL TRANSPARENTE	58
MODULO FONTE CHAVEADA ENTRADA 90 a 253VCA / SAÍDA 24VDC / 3A	59
MODULO FONTE CHAVEADA ENTRADA 90 a 253VCA SAÍDA 24VDC / 5A	59
MODULO AMPLIFICADOR PARA VÁLVULA PROPROCIONAL	60
MODULO DE ENERGIA	32
MODULO SLAVE DE COMUNICAÇÃO	33
• Esquemas de Ligações para os Bastidores da Série MPC4004R e MPC4004T	34
Montagem Horizontal de Bastidores (recomendado)	64
Montagem Vertical de Bastidores	64
Bastidores para Trilho DIN.	35

4. CARACTERÍSTICAS DOS DRIVERS MPC4004, MPC4004G E MPC4004L67

Mapeamento de Memória Managemento de Memória das CPU/s 4004 11/L o 4004 12/L	67
Mapeamento de Memória das CPU's: $4004.11/L = 4004.12/L$	
Mapeamento de Memória das CPU's: 4004.05F, 4004.06F e 4004.09F	
Descrição dos Estados Internos de 0000 até 03FF (todos os drivers)	
Módulos Digitais	
Entradas Digitais	
Saldas Digitais	
Multiplex	
Litilizando o Anlicativo WinSLIP 2	
Módulos Analógicos	
Módulos Analógicos (Mistos)	
Endereçamento das Expansões Analógicas	
Modulo Analogico Compacto (MAC)	
Litilizando o Anlicativo WinSLIP 2	
Módulos de Temperatura	
Mapeamento de Memória	
Modulo 4004.85 (P I 100 a 3 fios)	
Endereçamento das Expansoes de Temperatura	రు రం
Contadores Rápidos	85
Mapeamento de Memória	86
Utilizando o Aplicativo WinSUP 2	87
• Módulo de Energia	
Fórmulas Relacionadas as Medicões:	
Mapeamento de Memória	
Endereçamento do Módulo de Energia	91
Utilizando o Aplicativo WinSUP 2	91

Programa de Interrupção 1	93
Programa de Interrupção 2	94
Canais de Comunicação Serial	95
Recursos Disponíveis Utilizando o Aplicativo WinSUP 2	95 95
Aplicações Especiais com o Controlador MPC4004	96
Comparação Automática de Registros:	
Movimentação de Dados Através de El:	
Simulador de Ângulo	
Contador Rápido (Presente no Módulo de Processamento)	
Temporizadores e Contadores	102
Temporizadores (0,001s)	103
Motor de Passo	104
Envio de Caracteres Através do Canal Serial (Instrução PRINT)	107
Leitura de Caracteres Através do Canal Serial	107
Impressão de Dados (TXPR)	109
Comunicação Background	110

Mapeamento de memória	113
Mapeamento de Memória das CPU's:4004.05R, 4004.06R, 4004.09R, 4004.05T, 4004.06T e 4004.09T	113
Descrição dos Estados Internos de E000 até EFFF	114
Descrição dos Estados Internos de 0000 até 03FF	114
• Fonte, CPU e IHM	117
Inserindo uma Fonte no Projeto	117
Inserindo uma CPU no Projeto	118
Inserindo uma IHM no Projeto	119
Módulos Digitais	120
Entradas Digitais	120
Saídas Digitais	120
Multiplex	120
Módulos com Troca a Quente	121
Endereçamento das Expansões Digitais	125
Utilizando o Aplicativo WinSUP 2	125
Módulos Analógicos	128
Módulos Analógicos (Mistos)	128
Endereçamento das Expansões Analógicas	128
Módulo Analógico Compacto (MAC)	128
Endereçamento das Entradas e Saídas Analógicas Compactas (MAC)	128
Utilizando o Aplicativo WinSUP 2	129
Módulos de Temperatura	132
Módulo 4004.85 (PT100 a 3 fios)	133
Endereçamento das Expansões de Temperatura	133
Utilizando o Aplicativo WinSUP 2	134
Contadores Rápidos	135
Mapeamento de Memória	136
Utilizando o Aplicativo WinSUP 2	137
• Módulo de Energia	138
Fórmulas Relacionadas as Medicões:	138
Mapeamento de Memória	139
Endereçamento do Módulo de Energia	141
Utilizando o Aplicativo WinSUP 2	141

Índice

Módulo Slave de Comunicação	
Características dos Módulos 4004.72R e 4004.72M	
Princípio de Funcionamento	144
Cálculo do Tempo de Atualização dos Dados	145
Utilizando o Aplicativo WinSUP 2	146
Topologia	
Programa de Interrupção 1	
Utilizando o Aplicativo WinSUP 2	149
Programa de Interrupção 2	
Utilizando o Aplicativo WinSUP 2	151
Canais de Comunicação Serial	
Recursos Disponíveis	
Utilizando o Aplicativo WinSUP 2	154
• Aplicações Especiais com o Controlador MPC4004R / MPC4004T	
Aplicações Especiais com o Controlador MPC4004R / MPC4004T Comparação Automática de Registros:	155
Aplicações Especiais com o Controlador MPC4004R / MPC4004T Comparação Automática de Registros: Movimentação de Dados Através de El:	
Aplicações Especiais com o Controlador MPC4004R / MPC4004T Comparação Automática de Registros: Movimentação de Dados Através de EI: Simulador de Ângulo	
Aplicações Especiais com o Controlador MPC4004R / MPC4004T Comparação Automática de Registros: Movimentação de Dados Através de El: Simulador de Ângulo Contador Rápido (Presente no Módulo de Processamento)	155 155 158 161 161
Aplicações Especiais com o Controlador MPC4004R / MPC4004T Comparação Automática de Registros: Movimentação de Dados Através de El: Simulador de Ângulo Contador Rápido (Presente no Módulo de Processamento) Temporizadores e Contadores	155 155 158 161 161 165
Aplicações Especiais com o Controlador MPC4004R / MPC4004T Comparação Automática de Registros: Movimentação de Dados Através de El: Simulador de Ângulo Contador Rápido (Presente no Módulo de Processamento) Temporizadores e Contadores Temporizadores (0,001s)	155 155 158 161 161 165 165
Aplicações Especiais com o Controlador MPC4004R / MPC4004T Comparação Automática de Registros: Movimentação de Dados Através de El: Simulador de Ângulo Contador Rápido (Presente no Módulo de Processamento) Temporizadores e Contadores Temporizadores (0,001s) Motor de Passo	155 155 158 161 161 165 166 167
Aplicações Especiais com o Controlador MPC4004R / MPC4004T Comparação Automática de Registros: Movimentação de Dados Através de El: Simulador de Ângulo. Contador Rápido (Presente no Módulo de Processamento). Temporizadores e Contadores Temporizadores (0,001s). Motor de Passo. Envio de Caracteres Através do Canal Serial (Instrução PRINT).	155 155 158 161 161 165 166 167 171
Aplicações Especiais com o Controlador MPC4004R / MPC4004T Comparação Automática de Registros: Movimentação de Dados Através de El: Simulador de Ângulo. Contador Rápido (Presente no Módulo de Processamento). Temporizadores e Contadores Temporizadores (0,001s). Motor de Passo. Envio de Caracteres Através do Canal Serial (Instrução PRINT). Leitura de Caracteres Através do Canal Serial	155 155 158 161 161 165 166 167 171 172
Aplicações Especiais com o Controlador MPC4004R / MPC4004T Comparação Automática de Registros: Movimentação de Dados Através de El: Simulador de Ângulo. Contador Rápido (Presente no Módulo de Processamento). Temporizadores e Contadores Temporizadores (0,001s). Motor de Passo. Envio de Caracteres Através do Canal Serial (Instrução PRINT). Leitura de Caracteres Através do Canal Serial Impressão de Dados (TXPR)	155 155 158 161 161 165 166 167 171 172 173
Aplicações Especiais com o Controlador MPC4004R / MPC4004T Comparação Automática de Registros: Movimentação de Dados Através de El: Simulador de Ângulo Contador Rápido (Presente no Módulo de Processamento) Temporizadores e Contadores Temporizadores e Contadores Temporizadores (0,001s) Motor de Passo Envio de Caracteres Através do Canal Serial (Instrução PRINT) Leitura de Caracteres Através do Canal Serial Impressão de Dados (TXPR) Comunicação Background	155 155 158 161 161 161 165 166 167 171 172 173 174
Aplicações Especiais com o Controlador MPC4004R / MPC4004T Comparação Automática de Registros: Movimentação de Dados Através de El: Simulador de Ângulo. Contador Rápido (Presente no Módulo de Processamento). Temporizadores e Contadores Temporizadores e Contadores Temporizadores (0,001s). Motor de Passo Envio de Caracteres Através do Canal Serial (Instrução PRINT). Leitura de Caracteres Através do Canal Serial Impressão de Dados (TXPR). Comunicação Background. Habilita Comparação de Máximos e Mínimos.	155 155 158 161 161 161 165 166 167 171 172 173 174 177
Aplicações Especiais com o Controlador MPC4004R / MPC4004T Comparação Automática de Registros: Movimentação de Dados Através de El: Simulador de Ângulo. Contador Rápido (Presente no Módulo de Processamento). Temporizadores e Contadores Temporizadores (0,001s). Motor de Passo. Envio de Caracteres Através do Canal Serial (Instrução PRINT). Leitura de Caracteres Através do Canal Serial Impressão de Dados (TXPR). Comunicação Background. Habilita Conparação de Máximos e Mínimos Habilita Contador/Temporizador 33 a 48. Dragamenção On Ling.	155 155 158 161 161 165 166 167 171 172 173 174 177 179

6. INTERFACES HOMEM MÁQUINA (IHM)183

• Configuração	
Descrição das Interfaces e Dimensões	
Interface 2002P95C	
Interface 2002P96C	
Interface 4004.90C	
Interface 4004G92C	
Interface 4004P92C	
Interface 4004P94C	
Interface 4004.95C	
Interfaces 4004P98C	
• Cabos para as IHM's da série MPC4004	
Descrição de Funcionamento das Interfaces Numéricas	
Telas de Edicão	
Tecla de Auxílio à Manutenção	
Tecla de Bloqueio de Teclado	
Utilizando o Aplicativo WinSUP 2	
Descrição do Funcionamento das Receitas via IHM (Arguivo de Moldes)	
Utilizando o Aplicativo WinSUP 2	193
Descrição de Funcionamento dos Campos Livres	
Funcionamento da Tecla Senha	
Utilizando o Aplicativo WinSUP 2	
Tela de Auxílio à Manutenção	

• Programação das Telas	
Implementação de Valores Máximos nos Campos de Edição Utilizando o Aplicativo WinSUP 2	
• Chave na Posição Prog	
Descrição das Funções	
Botoeiras e LED's presentes nas interfaces Mapeamento de Memória	
Alarmes	
Utilizando o Aplicativo WinSUP 2	

• Cabos de Ligação para os Canais Seriais	
Cabo de Ligação em RS232 (PC ⇔ MPC4004)	
Cabo de Ligação em RS485 (Rede para MPC4004)	
Características Elétricas do Cabo para Padrão RS485	
Cabo de Ligação em RS485 (a curta distância com o PC)	
Cabo de Ligação para RS485 com IHM Séries 1720.xy	
Cabo de Ligação para RS232 com Terminal Série 1755.xx	
Cabo de Ligação em RS232 (MODEM ⇔ MPC4004)	
Proteção Contra Descarga Eletromagnética	
Utilizando a Instrução Print	211
Utilizando o Escuta Canal Serial	211
Apr03 Modo Mestre	211
Utilizando o Protocolo Modbus	211
• Force	
Utilizando o Aplicativo WinSUP 2	

APÊNDICE A – AUTODIAGNÓSTICO	213
Mensagens de Autodiagnóstico nas Interfaces (IHM)	
Autodiagnóstico do LED de Status:	214
APENDICE B – RESUMO DE CONSUMO DOS MODULOS	215
Disponibilidade de Corrente das Fontes de Alimentação	

APÊNDICE D - RESUMO DAS INSTRUÇÕES PARA SÉRIE MPC4004227

APÊNDICE E - DESCRIÇÃO DO ALGORITMO PID	.229
Valores iniciais de controle	232

1. Introdução

O Controlador Programável **MCP4004** possui uma estrutura modular flexível, que permite ao usuário selecionar os mais variados tipos de módulos, para obter uma alta performance nas suas necessidades de automação. A grande variedade de unidades de processamento, entradas e saídas, as opções de rede e a excelente conectividade com outros elementos da automação, fazem do MPC4004 a escolha perfeita para soluções de automação, tanto para o usuário final como para o fabricante de equipamentos.

Partindo de um módulo básico (CPU) que possui 8 entradas e 8 saídas digitais, controlador de teclado e display de cristal líquido das Interfaces Homem-Máquina, 2 canais de comunicação serial (RS232 e RS485), memória FLASH para programa de usuário, memórias RAM ou NVRAM com relógio de tempo real, o MPC4004 pode atingir a capacidade máxima de 496 entradas e saídas digitais, 120 entradas e saídas analógicas (tensão ou corrente), 64 canais de temperatura (termopar J, K e RTD Pt100) e 2 contadores de 100 kHz com entrada para encoder.

Para otimizar a aplicação do MPC4004, foi desenvolvida a ferramenta de programação **WinSUP 2** que através de seu computador possibilita o desenvolvimento de diagramas "Ladder", telas da IHM, monitoramento de diagramas "Ladder" e variáveis do sistema. O conjunto de instruções do MPC4004 permite entre outros recursos, contadores, timers, operações com relógio calendário, seqüenciador, sub-rotinas, jump, call, operações indexadas e operações matemáticas básicas. As Interfaces Homem Máquina (*IHM*) são indispensáveis para garantir uma interação perfeita no controle automatizado. A **Atos** desenvolveu vários modelos de interfaces para operarem em conjunto com o controlador programável, possibilitando leitura, sinalização e mudança de parâmetros. Todas as mensagens, teclas de função, alarmes, edição e visualização de campos de dados são gerenciadas pelo processador principal, sem usar instruções de "Ladder".

A figura abaixo apresenta uma visão geral dos módulos da série **MPC4004**:

Fig. 1.- Série MPC4004.

• Configurações Mínimas para Rodar o WinSUP 2

- Processador: Pentium 120 MHz com 32 Mb de RAM.
- Vídeo: 800x600 pixels (fontes pequenas)
- Espaço disponível no HD: 26 Mb
- Sistema Operacional: Windows 95, 98, NT, 2000, ME e XP

Configurações Recomendadas

- **Processador:** Pentium 600 MHz com 64 Mb de RAM.
- Sistema Operacional: Windows 98, NT, 2000, ME e XP

2. Componentes da Série

• Descrição Geral dos Módulos

MODELO	DESCRIÇÃO
2002P95C *	FRONTAL P/ MPC4004 2x20 LCD (frontal plástico / sem cabo)
2002P95SC *	FRONTAL P/ MPC4004 2x20 LCD (frontal plástico / sem FRD / sem cabo)
2002P96C *	FRONTAL P/ MPC4004 2x20 LCD (frontal plástico / sem cabo)
2002P96SC *	FRONTAL P/ MPC4004 2x20 LCD (frontal plástico / sem FRD / sem cabo)
4004.01	CPU NVRAM 8E/8S "N" 24 Vcc
4004.02	CPU NVRAM 8E/8S "P" 24 Vcc
4004.05B	CPU XA RAM C/ BATERIA 8E/8S "N" 24Vcc
4004.05E	CPU XA RAM GOLD 8E/8S "N" 24 Vcc
4004.05R	CPU XA RAM C/ BATERIA 8E/8S "N" 24 Vcc
4004.05T	CPU XA RAM C/ BATERIA 8E/8S "N" 24 Vcc (Prog. On Line)
4004.06B	CPU XA RAM C/ BATERIA 8E/8S "P" 24 Vcc
4004.06E	CPU XA RAM GOLD 8E/8S "P" 24 Vcc
4004.06R	CPU XA RAM C/ BATERIA 8E/8S "P" 24 Vcc
4004.061	CPU XA RAM C/ BATERIA 8E/8S "P" 24 Vcc (Prog. On Line)
4004.09B	CPU XA RAM C/ BATERIA 8E "N/P" 24 VCC / 8S RELE
4004.09E	CPU XA RAM GOLD 8E "N/P" / 8S RELE
4004.09R	CPU XA RAM C/ BATERIA 8E N/P 24 VCC / 85 RELE
4004.091	CPU XA RAIVI C/ DATERIA OF IN/P 24 VCC / 05 RELE (PIOUS. OIT LINE)
4004.11	
4004.11/	CPU RAM GOLD 8E/8S "P" 24 VCC
4004 12/1	CPU RAM GOLD 8E/8S "P" 24 Vcc
4004.21	BASTIDOR DE 01 SI OT
4004.22	BASTIDOR DE 02 SI OTS
4004.22T	BASTIDOR P/ TRILHO DIN DE 2 SLOTS
4004.24	BASTIDOR DE 04 SLOTS
4004.24T	BASTIDOR P/ TRILHO DIN DE 4 SLOTS
4004.26	BASTIDOR DE 06 SLOTS
4004.26R	BASTIDOR DE 06 SLOTS COM EXPANSÃO
4004.26T	BASTIDOR P/ TRILHO DIN DE 6 SLOTS
4004.26RT	BASTIDOR P/ TRILHO DIN DE 6 SLOTS COM EXPANSÃO
4004.28	BASTIDOR DE 08 SLOTS
4004.28R	BASTIDOR DE 08 SLOTS COM EXPANSÃO
4004.281	BASTIDUR P/TRILHU DIN DE 8 SLUTS
4004.20K1	BASTIDOR P/TRILIO DIN DE 0 SLOTS COM EXPANSÃO
4004.2A	BASTIDOR DE 10 SLOTS BASTIDOR DE 10 SLOTS COM EXPANSÃO
4004.2AT	BASTIDOR P/ TRILHO DIN DE 10 SLOTS
4004.2ART	BASTIDOR P/ TRILHO DIN DE 10 SLOTS COM EXPANSÃO
4004.2C	BASTIDOR DE 12 SLOTS
4004.2CR	BASTIDOR DE 12 SLOTS COM EXPANSÃO
4004.2CT	BASTIDOR P/ TRILHO DIN DE 12 SLOTS
4004.2CRT	BASTIDOR P/ TRILHO DIN DE 12 SLOTS COM EXPANSÃO
4004.31	EXPANSÃO COM 16S 24VCC "N"
4004.31G	EXPANSAO COM 16S 24VCC "N"
4004.31H	EXPANSAO COM 16S 24VCC "N" (Troca a Quente)
4004.32	EXPANSAO DIGITAL 16S "P" 24Vcc
4004.32G	EXPANSAU DIGITAL 165 P 24VCC
4004.32	EXPANSÃO DIGITAL 165 P 24VCC (TOCA à Quente)
4004.33	EXPANSÃO DIGITAL 10E IN 24VCC EXPANISÃO DIGITAL 16E "N" 24Vcc
4004.33H	EXPANSÃO DIGITAL 16E "P" ou "N" 24V/cc (Troca a Quente)
4004.34	EXPANSÃO DIGITAL 16E "P" 24Vcc
4004.34G	EXPANSÃO DIGITAL 16E "P" 24Vcc
4004.35	EXPANSÃO DIGITAL 8E 110 Vca
4004.35/A	EXPANSÃO DIGITAL 8E 220 Vca
4004.37	EXPANSÃO DIGITAL 8S RELE
4004.38G	EXPANSÃO DIGITAL 8E "N/P" 24Vcc

	~
4004.39	EXPANSÃO DIGITAL 8S TRIAC 90 a 240 Vca
4004.40	FONTE DE ALIMENTAÇÃO CHAVEADA 90 A 253 Vca c/ 24 Vcc AUXILIAR
4004.40/A	FONTE DE ALIMENTAÇÃO CHAVEADA 9 A 36 Vcc
4004.40/D	FONTE DE ALIMENTAÇÃO CHAVEADA 36 A 60 Vcc c/ 24 Vcc AUXILIAR (OBSOLETA)
4004.40/F	FONTE DE ALIMENTAÇÃO CHAVEADA 90 A 253 Vca
4004.40/G	FONTE DE ALIMENTAÇÃO CHAVEADA 18 A 60 Vcc c/ 24 Vcc AUXILIAR
4004.40/R	FONTE DE ALIMENTAÇÃO CHAVEADA 90 A 253 Vca c/ 24 Vcc AUXILIAR
4004.45	MÓDULO DE ENERGIA
4004.51	EXPANSÃO DIGITAL 8E/8S "N" 24 Vcc
4004.52	EXPANSÃO DIGITAL 8E/8S "P" 24 Vcc
4004.53	EXPANSÃO DIGITAL 16E/16S "N" 24 Vcc
4004.53G	EXPANSÃO DIGITAL 16E/16S "N" 24 Vcc
5005.53H	EXPANSÃO DIGITAL 16E "P" ou "N" /16S "N" 24 Vcc (Troca a Quente)
4004.54	EXPANSÃO DIGITAL 16E/16S "P" 24 Vcc
4004.54G	EXPANSÃO DIGITAL 16E/16S "P" 24 Vcc
4004.54H	EXPANSÃO DIGITAL 16E "P" ou "N" /16S "P" 24 Vcc (Troca a Quente)
4004.55	EXPANSÃO DIGITAL 32E "N" 24 Vcc
4004.55G	EXPANSÃO DIGITAL 32E "N" 24 Vcc
4004.55H	EXPANSÃO DIGITAL 32E "P" ou "N" 24 Vcc (Troca a Quente)
4004.56	EXPANSÃO DIGITAL 32E "P" 24 Vcc
4004.56G	EXPANSÃO DIGITAL 32E "P" 24 Vcc
4004.57	EXPANSÃO DIGITAL 8E "N/P" 24 Vcc / 8S RELE
4004.58G	EXPANSÃO DIGITAL 16E "N/P" 24Vcc / 16S RELE
4004.60	EXPANSÃO ANALÓGICA 2E (TENSÃO ou CORRENTE) e 2S (TENSÃO) 0 A 10 Vcc
4004.60/A	EXPANSÃO ANALÓGICA 2E (TENSÃO ou CORRENTE) e 2S (CORRENTE) 0 A 20 mA
4004.60N	EXPANSÃO ANALÓGICA 2E (TENSÃO ou CORRENTE) e 2S (TENSÃO) 0 a 10Vcc ou +/- 10 Vcc
4004.61	EXPANSÃO ANALÓGICA 4E (TENSÃO ou CORRENTE) e 4S (TENSÃO) 0 A 10 Vcc
4004.61/A	EXPANSÃO ANALÓGICA 4E (TENSÃO ou CORRENTE) e 4S (CORRENTE) 0 A 20 mA
4004.61N	EXPANSÃO ANALÓGICA 4E (TENSÃO ou CORRENTE) e 4S (TENSÃO) 0 a 10Vcc ou +/- 10 Vcc
4004.62G	EXPANSÃO ANALÓGICA 8E (TENSÃO ou CORRENTE) 0 A 10 Vcc / 0 A 20 mA
4004.62P	EXPANSÃO ANALÓGICA 4E (TENSÃO ou CORRENTE) 0 A 10 Vcc / 0 A 20 mA
4004.63G	EXPANSÃO ANALÓGICA 8S (TENSÃO) 0 A 10 Vcc
4004.63P	EXPANSÃO ANALÓGICA 4S (TENSÃO) 0 A 10 Vcc
4004.64G	EXPANSÃO ANALÓGICA 8S (CORRENTE) 0 A 20 mA
4004.64P	EXPANSÃO ANALÓGICA 4S (CORRENTE) 0 A 20 mA
4004.65/J	EXPANSÃO TEMPERATURA 4 CANAIS TIPO "J"
4004.65/K	EXPANSÃO TEMPERATURA 4 CANAIS TIPO "K"
4004.66/J	EXPANSÃO TEMPERATURA 8 CANAIS TIPO "J"
4004.66/K	EXPANSÃO TEMPERATURA 8 CANAIS TIPO "K"
4004.70	EXPANSÃO DIGITAL BOTÕES E SINALIZAÇÃO POR LED'S
4004.71R	MÓDULO CONVERSOR ISOLADO RS232 / RS485 c/ PROTEÇÃO
4004.72	SLAVE DE COMUNICAÇÃO 2X RS485 APR03 ESCRAVO
4004.72R	SLAVE DE COMUNICAÇÃO 2X RS485 APR03 MESTRE / ESCRAVO
4004.72D	SLAVE DE COMUNICAÇÃO DEVICE NET
4004.72E	SLAVE DE COMUNICAÇÃO ETHERNET
4004.72M	SLAVE DE COMUNICAÇÃO 2X RS485 MODBUS RTU MESTRE / ESCRAVO
4004.72MP	SLAVE DE COMUNICAÇÃO MESTRE PROFIBUS-DP
4004.72P	SLAVE DE COMUNICAÇÃO PROFIBUS-DP
4004.73	MÓDULO AMPLIFICADOR PARA VÁLVULA PROPORCIONAL 4 CANAIS
4004.73M	MÓDULO AMPLIFICADOR PARA VÁLVULA PROPORCIONAL 2 CANAIS
4004.74	MÓDULO MODEM (POSSUI MANUAL ESPECÍFICO)

MODELO	DESCRIÇÃO
4004.75/P	EXPANSÃO TEMPERATURA 4 CANAIS PT100 / 3 FIOS "0 a 200 °C"
4004.75P1	EXPANSÃO TEMPERATURA 4 CANAIS PT100 / 3 FIOS "-50 a 50 °C"
4004.75P2	EXPANSÃO TEMPERATURA 4 CANAIS PT100 / 3 FIOS "-50 a 150 °C"
4004.76/P	EXPANSÃO TEMPERATURA 8 CANAIS PT100 / 3 FIOS "0 a 200 °C"
4004.76P1	EXPANSÃO TEMPERATURA 8 CANAIS PT100 / 3 FIOS "-50 a 50 °C"
4004.76P2	EXPANSÃO TEMPERATURA 8 CANAIS PT100 / 3 FIOS "-50 a 150 °C"
4004.78	MÓDULO CONVERSOR ETHERNET / SERIAL TRANSPARENTE (POSSUI MANUAL ESPECÍFICO)
4004.78W	MÓDULO WEB SERVER PARA MPC4004
4004.85	EXPANSÃO TEMPERATURA 4 CANAIS PT100 / 3 FIOS "0 a 200 °C" + 4EA 0-10V ou 0-20mA
4004.85P2	EXPANSÃO TEMPERATURA 4 CANAIS PT100 / 3 FIOS "-50 a +150°C" + 4EA 0-10V ou 0-20mA
4004.87	EXPANSÃO DE CONTAGEM RÁPIDA 100kHz 2 CANAIS
4004.87SA	EXPANSÃO DE CONTAGEM RÁPIDA 100kHz 2 CANAIS + 2S ANALOG.
4004.90C *	FRONTAL P/ MPC4004 2x20 LCD NEGATIVO (frontal plástico / sem cabo)
4004.90SC *	FRONTAL P/ MPC4004 2x20 LCD NEGATIVO (frontal plástico / sem FRD / sem cabo)
4004G92C *	FRONTAL P/ MPC4004 4x20 LCD display de dígito grande 9x5mm (frontal plástico / sem cabo)
4004G92SC *	FRONTAL P/ MPC4004 4x20 LCD display de dígito grande 9x5mm (frontal plástico / sem FRD / sem cabo)
4004P92C *	FRONTAL P/ MPC4004 4x20 LCD (frontal plástico / sem cabo)
4004P92SC *	FRONTAL P/ MPC4004 4x20 LCD (frontal plástico / sem FRD / sem cabo)
4004.P94C *	FRONTAL P/ MPC4004 4x20 LCD -display de dígito grande 9x5mm - (sem cabo)
4004.94SC *	FRONTAL P/ MPC4004 4x20 LCD -display de dígito grande 9x5mm - (sem FRD / sem cabo)
4004.95C *	FRONTAL P/ MPC4004 4x20 LCD (frontal plástico / sem cabo)
4004.95SC *	FRONTAL P/ MPC4004 4x20 LCD (frontal plástico / sem FRD / sem cabo)
4004.P98C *	FRONTAL P/ MPC4004 4x20 LCD (sem cabo)
4004.98SC *	FRONTAL P/ MPC4004 4x20 LCD (sem FRD / sem cabo)

<u>* Importante</u>: Devido à diversidade de aplicações em que as IHMs (frontais) são utilizadas, elas são fornecidas sem o cabo de conexão, devendo o usuário solicitá-lo separadamente (*ver codificação abaixo*).

Observação: FRD é a película de policarbonato onde é aplicada a serigrafia com a identificação das teclas.

• Cabos para IHMs (frontais)

MODELO	DESCRIÇÃO
CAF20005	CABO FLAT SEM BLINDAGEM 20 VIAS COM 0,5m
CAF20010	CABO FLAT SEM BLINDAGEM 20 VIAS COM 1,0m
CMB20005	CABO MANGA BLINDADO 20 VIAS COM 0,5m
CMB20010	CABO MANGA BLINDADO 20 VIAS COM 1,0m
CMB20015	CABO MANGA BLINDADO 20 VIAS COM 1,5m
CMB20020	CABO MANGA BLINDADO 20 VIAS COM 2,0m

• Acessórios

MODELO	DESCRIÇÃO
1901.00	MÓDULO AMPLIFICADOR PARA VÁLVULA PROPORCIONAL 4 CANAIS
1901.00M	MÓDULO AMPLIFICADOR PARA VÁLVULA PROPORCIONAL 2 CANAIS
2232.00R	CONVERSOR RS232/RS485 ISOLADO C/ PROTEÇÃO
2240.03	FONTE CHAVEADA ENTRADA 90-253VCA / SAÍDA 24VCC 3A
2240.05R	FONTE CHAVEADA ENTRADA : 90 a 253VCA / SAÍDA 24VCC 5A
2250.00	MÓDULO MODEM (POSSUI MANUAL ESPECÍFICO)
2345.10	CONVERSOR ETHERNET / SERIAL TRANSPARENTE (POSSUI MANUAL ESPECÍFICO)
CAF400401	CABO FLAT 34 VIAS P/ EXPANSÃO DE BASTIDORES (MONTAGEM HORIZONTAL)
CFB340035	CABO FLAT BLINDADO 34 VIAS 35 cm P/ EXPANSÃO DE BASTIDORES (MONTAGEM VERTICAL)
CRS232415	CABO DE COMUNICAÇÃO PC $\leftrightarrow \rightarrow$ MPC4004

3. Características da série MPC4004

• Características Gerais do MPC4004

Tensão de alimentação nominal	: 90 a 253 Vca , 47 a 63 Hz : 36 a 60 Vcc : 9 a 36 Vcc : 18 a 60 Vcc	ou ou ou	
Falta momentânea de energia permissível	: máximo 50 ms		
Isolação Óptica	: 1.500 Vca entre alimentação ou Terminal de E/S e terra		
Temperatura de Armazenagem	: -20 a +70 °C		
Temperatura de Operação	: 0 a +55 °C		
Umidade	: 0 a 95% (sem condensação)		
Vibração	: 5 a 50 Hz / 0,625 G (0,1 mm pico a pico)		
Imunidade a ruído	: Conforme Nema Standard ICS2-23	0	
Imunidade à descarga eletrostática	: Conforme IEC 801-2		
Indicadores LED	: Entradas (verde); saídas (vermelho); STS (vermelho).	
Método de Programação	: Diagrama de relés		
Conjunto de Instruções	: DWARE		
Interface Homem-Máquina	: Frontal de teclado/display LCD ou \	/FD	
Proteção contra queda de energia	: 30 dias p/ memória RAM através de capacitor GOLD o 10 anos com memória NVRAM ou 10 anos com bateria de Lítio		
Interface de Comunicação	: Padrão RS232 / RS485		

O MTBF dos módulos da família MPC4004 @ 40°C excede a 300.000 horas, conforme a norma MIL-HDBK-217 FN2.

Módulo	MTBF em horas
4004.2AR	2.415.967
4004.40	530.504
4004.05R	410.041
4004.53G	518.095
4004.62G	685.807
4004.63G	930.119
4004.66J	355.960
4004.76P	564.225
4004.G92	321.062

A tabela abaixo descreve o MTBF @ 40°C de alguns módulos da série MPC4004:

Caso seja solicitado o valor do MTBF de um módulo específico que não conste do conjunto apresentado, será contratado o cálculo (Previsão para entrega do serviço, 15 dias úteis).

Capacidade Máxima de Configuração

A série **MPC4004** aceita unidades de E/S digitais ou E/S analógicas com as seguintes combinações:

	NÚMERO MÁXIMO DE PONTOS					
IIEM	MPC4004	MPC4004G	MPC4004L	MPC4004R	MPC4004T	
Módulos no Bastidor	10	10	04	20	20	
Entrada Analógica	16 ⁽¹⁾	16 ⁽¹⁾		120 ⁽²⁾	120 ⁽²⁾	
Saída Analógica	16 ⁽¹⁾	16 ⁽¹⁾		120 ⁽²⁾	120 ⁽²⁾	
Canal de Temperatura	16	16		64	64	
Entrada Digital	120	120	24	248 ⁽³⁾	248 ⁽³⁾	
Saída Digital	120	120	24	248 ⁽³⁾	248 ⁽³⁾	
Canal de Contagem Rápida (100 kHz)	02	02		02	02	
Canal de Contagem Rápida (3 kHz)	01 ⁽⁴⁾	01 (4)		01 (4)	01 (4)	
Canal de Contagem Rápida (2 kHz)			01 ⁽⁴⁾			
Módulos Slaves		08		08	08	

(1) Ao utilizar **somente** os Módulos Analógicos Compactos (MAC) obtém-se o número máximo de 32 Entradas ou 32 Saídas Analógicas, porém deve-se verificar o consumo dos módulos e respeitar a capacidade de fornecimento de corrente pela fonte ver página 215.

(2) Ao utilizar somente os Módulos Analógicos Compactos (MAC) obtém-se o número máximo de 120 Entradas ou 120 Saídas Analógicas.

(3) Ao utilizar somente os Módulos Digitais (16E/16S) obtém-se o número máximo de 248 Entradas ou 248 Saídas Digitais.

(4) Presente no Módulo de Processamento

Importante: Ao utilizar os drivers MPC4004, MPC4004G e MPC4004L, as seguintes regras devem ser respeitadas:

- O primeiro módulo é obrigatoriamente um módulo de processamento e o último módulo é obrigatoriamente a fonte de alimentação.
- O número máximo de Módulos Analógicos é 04, sendo possível misturar os dois modelos (Módulo de Expansão E/S Analógicas e Módulo Analógico Compacto – MAC).
- Também obedecer ao número máximo de expansões para os seguintes módulos:

MODELO	N ^{O.} DE MÓDULOS		
Temperaturas	2		
Multiplex	1		
4004.85/4004.85P2	1		
4004.87/4004.87SA	1		

Conceitos Básicos do Mapeamento de Memória

Os valores na memória do Controlador Programável seguem uma estrutura de dados de 4 dígitos (caso BCD com valores de 0000 a 9999 ou caso BIN de 0000 a FFFFh), onde a parte mais significativa ocupa um endereço par e a parte menos significativa ocupa o endereço ímpar seguinte.

Exemplo: O registro 0480 contém um dado de valor 1234. Portanto o conteúdo do endereço 0480 será 12 e o conteúdo do endereço 0481 será 34.

Alguns registros são de uso geral, enquanto outros possuem atribuições especiais.

Módulos de Processamento

Programaçao:							
MODELO	4004.01 4004.02 4004.11 4004.12 4004.11/L 4004.12/L	4004.05B 4004.05E 4004.06B 4004.06E 4004.09B 4004.09E	4004.05R 4004.06R 4004.09R 4004.05T 4004.06T 4004.09T				
Tempo de Varredura	6 ms/K	5 ms/K	5 ms/K				
Capacidade de Programação	12 Kbytes Flash	16 Kbytes Flash	48 Kbytes Flash				
Capacidade das Telas	8 Kbytes Flash	12 Kbytes Flash	36 Kbytes Flash				
Estados Internos	1.024	1.024	5.119				
Registros Internos	1.536	29.184	28.160				
Temporizadores e contadores de firmware	32 (resolução: 0,01s) 02 (resolução: 0,001s)	32 (resolução: 0,01s) 02 (resolução: 0,001s)	48 (resolução: 0,01s) 02 (resolução: 0,001s)				

Hardware:

MODELO	ENTRADAS	SAÍDAS	MEMÓRIA USUÁRIO	MEMÓRIA FLASH	RELÓGIO CALENDÁRIO	COMUNICAÇÃO SERIAL
4004.01	8 E tipo N	8 S tipo N	32K NVRAM	32Kbytes	Sim	RS232/RS485
4004.02	8 E tipo P	8 S tipo P	32K NVRAM	32Kbytes	Sim	RS232/RS485
4004.05B ⁽¹⁾	8 E tipo N	8 S tipo N	54K RAM	16Kbytes	Sim	RS232/RS485
4004.05E ⁽¹⁾	8 E tipo N	8 S tipo N	54K RAM	16Kbytes	Sim	RS232/RS485
4004.05R ⁽¹⁾	8 E tipo N	8 S tipo N	64K RAM ⁽³⁾	128Kbytes	Sim	RS232/RS485
4004.05T ⁽¹⁾	8 E tipo N	8 S tipo N	64K RAM ⁽³⁾⁽⁴⁾	128Kbytes	Sim	RS232/RS485
4004.06B ⁽¹⁾	8 E tipo P	8 S tipo P	64K RAM ⁽³⁾	32Kbytes	Sim	RS232/RS485
4004.06E ⁽¹⁾	8 E tipo P	8 S tipo P	64K RAM ⁽²⁾	32Kbytes	Sim	RS232/RS485
4004.06R ⁽¹⁾	8 E tipo P	8 S tipo P	64K RAM ⁽³⁾	128Kbytes	Sim	RS232/RS485
4004.06T ⁽¹⁾	8 E tipo P	8 S tipo P	64K RAM ⁽³⁾⁽⁴⁾	128Kbytes	Sim	RS232/RS485
4004.09B ⁽¹⁾	8 E tipo N ou P	8 S (Relé)	64K RAM ⁽³⁾	32Kbytes	Sim	RS232/RS485
4004.09E ⁽¹⁾	8 E tipo N ou P	8 S (Relé)	64K RAM ⁽²⁾	32Kbytes	Sim	RS232/RS485
4004.09R ⁽¹⁾	8 E tipo N ou P	8 S (Relé)	64K RAM ⁽³⁾	128Kbytes	Sim	RS232/RS485
4004.09T ⁽¹⁾	8 E tipo N ou P	8 S (Relé)	64K RAM ⁽³⁾⁽⁴⁾	128Kbytes	Sim	RS232/RS485
4004.11	8 E tipo N	8 S tipo N	32K RAM ⁽²⁾	32Kbytes	Não	RS232/RS485
4004.12	8 E tipo P	8 S tipo P	32K RAM ⁽²⁾	32Kbytes	Não	RS232/RS485
4004.11/L	8 E tipo N	8 S tipo N	32K RAM (2)	32Kbytes	Não	RS232
4004.12/L	8 E tipo P	8 S tipo P	32K RAM (2)	32Kbytes	Não	RS232

(1) CPU com processador XA;

(2) Retenção de dados por capacitor GOLD;

(3) Retenção de dados por bateria de Lítio.

(4) Memória física de 512Kb, porém estão disponíveis 64Kb para programa de usuário.

CARACTERÍSTICAS	4004.11 4004.12	4004.11/L 4004.12/L
Taxa de Baud rate variável	Sim	Sim
Freqüência do Contador rápido	3Khz	2Khz
Velocidade de Processamento (relativo)	5 x	1 x
Boot de usuário em memória FLASH	Sim	Sim
Corrente máxima para as saídas	2A	2A
Número de canais de comunicação serial	2	1 (RS232)
Unidades de expansão analógicas	Sim	Não
Programa de interrupção I e II	Sim	Não
Encoder bidirecional	Sim	Não
Expansões digitais	120E 120S	24E 24S (2 EXP)
Frontais numéricos	Sim	Sim *

Diferença entre os módulos 4004.11 e 4004.12 e os módulos 4004.11/L e 4004.12/L

*Apenas IHM's 4004.90 e 4004.95

Observações: Os modelos 4004.11/L e 4004.12/L por não endereçarem expansões analógicas podem utilizar a fonte 4004.40/B (mais econômica). Existe driver específico para estes modelos, o **driver** a ser utilizado deve ser o **MPC4004L**.

O driver é semelhante ao driver do MPC4004, porém o mesmo bloqueia funções não implementadas para o MPC4004L evitando assim que o usuário não perca tempo tentando usar funções não disponíveis.

Para os modelos MPC4004.11/L e MPC4004.12/L a configuração é fixa em duas expansões de 8E/8S.

MODELO	TIPO DE ALIMENTAÇÃO	+5Vcc	+12Vcc	-12Vcc	24Vcc
4004.40	chaveada 90 a 253Vca	1500mA	500mA	500mA	500mA
4004.40/A	chaveada 09 a 36Vcc	1500mA	500mA	500mA	
4004.40/D ⁽²⁾	chaveada 36 a 60Vcc	1000mA	250mA	250mA	500mA
4004.40/F ⁽¹⁾	chaveada 90 a 253Vca	1500mA			
4004.40/G	chaveada 18 a 60Vcc	1000mA	250mA	250mA	500mA
4004.40/R	chaveada 90 a 253Vca	3000mA	1000mA	500mA	500mA

Módulos de Fontes de Alimentação

(1) - Não pode ser utilizado em aplicações que utilizam módulos analógicos (entradas, saídas e temperaturas);

(2) - Módulo obsoleto.

Importante: Os módulos de temperatura devem estar do lado oposto da fonte de alimentação para evitar interferência de leitura em seus canais.

Módulos de Expansão Digital

Corrente Contínua:

MODELO	ENTRADA	SAÍDA	JUMPER DE GRUPO	TROCA A QUENTE
4004.31	-	16 S tipo N	-	-
4004.31G	-	16 S tipo N	Sim	-
4004.31H	-	16 S tipo N	Sim	Sim
4004.32	-	16 S tipo P	-	-
4004.32G	-	16 S tipo P	Sim	-
4004.32H	-	16 S tipo P	Sim	Sim
4004.33	16 E tipo N	-	-	-
4004.33G	16 E tipo N	-	Sim	-
4004.33H	16 E tipo P ou N	-	Sim	Sim
4004.34	16 E tipo P	-	-	-
4004.34G	16 E tipo P	-	Sim	-
4004.38G	8 E tipo N ou P	-	Sim	-
4004.51	8 E tipo N	8 S tipo N	-	-
4004.52	8 E tipo P	8 S tipo P	-	-
4004.53	16 E tipo N	16 S tipo N	-	-
4004.53G	16 E tipo N	16 S tipo N	Sim	-
4004.53H	16 E tipo P ou N	16 S tipo N	Sim	Sim
4004.54	16 E tipo P	16 S tipo P	-	-
4004.54G	16 E tipo P	16 S tipo P	Sim	-
4004.54H	16 E tipo P ou N	16 S tipo P	Sim	Sim
4004.55	32 E tipo N	-	-	-
4004.55G	32 E tipo N	-	Sim	-
4004.55H	32 E tipo P ou N	-	Sim	Sim
4004.56	32 E tipo P	-	-	-
4004.56G	32 E tipo P	-	Sim	-

Corrente Alternada:

MODELO	ENTRADA	SAÍDA
4004.35	8 E (110 Vca)	-
4004.35A	8 E (220 Vca)	-
4004.37 ⁽¹⁾	-	8 S (Relé)
4004.39	-	8 S (Triac)

(1) Possibilidade de Saída em Corrente Contínua (+24 Vcc)

Corrente contínua e alternada:

MODELO	ENTRADA	SAÍDA	JUMPER DE GRUPO
4004.57	8 E tipo "P" ou "N"	8 S (Relé)	-
4004.58G	16 E tipo "P" ou "N"	16 S (Relé)	Sim

Módulo Multiplex

MODELO	BOTÕES	LED'S
4004.70	32	32

Módulos de Expansão E / S Analógicas

MODELO	ENTRADA/SAÍDA
4004.60 (1)	2 E / 2 S
4004.61 ⁽¹⁾	4 E / 4 S
4004.60/A ⁽²⁾	2 E / 2 S
4004.61/A ⁽²⁾	4 E / 4 S
4004.60N ⁽³⁾	2 E / 2 S
4004.61N ⁽³⁾	4 E / 4 S

(1) Saída em tensão

(2) Saída em corrente

(3) Saída em tensão (0 a +10Vcc ou \pm 10Vcc c/ jumper interno)

Módulos Analógicos Compactos (MAC)

Módulos de Expansão de Entrada Analógica:

MODELO	ENTRADA	JUMPER DE GRUPO
4004.62G	8 E	Sim
4004.62/P	4 E	Sim

Módulos de Expansão de Saída Analógica:

MODELO	SAÍDA	JUMPER DE GRUPO
4004.63G ⁽¹⁾	8 S	Sim
4004.63/P ⁽¹⁾	4 S	Sim
4004.64G ⁽²⁾	8 S	Sim
4004.64/P ⁽²⁾	4 S	Sim

(1) Saída em Tensão

(2) Saída em Corrente

Módulos de Leitura de Temperatura

MODELO	TIPO	Nº DE CANAIS	TEMPERATURA	N° DE FIOS
4004.65/J	Termopar tipo J	04	0 °C a 500 °C	-
4004.66/J	Termopar tipo J	08	0 °C a 500 °C	-
4004.65/K	Termopar tipo K	04	0 °C a 1200 °C	-
4004.66/K	Termopar tipo K	08	0 °C a 1200 °C	-
4004.75/P	RTD tipo Pt100	04	0 °C a 200 °C	03
4004.75/P1	RTD tipo Pt100	04	-50 °C a +50 °C	03
4004.75/P2	RTD tipo Pt100	04	-50 °C a +150 °C	03
4004.76/P	RTD tipo Pt100	08	0 °C a 200 °C	03
4004.76/P1	RTD tipo Pt100	08	-50 °C a +50 °C	03
4004.76/P2	RTD tipo Pt100	08	-50 °C a +150 °C	03
4004.85 (1)	RTD tipo Pt100	04	0 °C a 200 °C	03
4004.85/P2 ⁽¹⁾	RTD tipo Pt100	04	-50 °C a +150 °C	03

(1) Disponibilidade de 4 canais de entrada analógica (0 a 10 V ou 0 a 20 mA)

Importante: Os módulos de temperatura devem estar do lado oposto da fonte de alimentação para evitar interferência de leitura em seus canais.

Módulos de Contagem Rápida

MODELO	N° DE CANAIS DE CONTAGEM	MÁXIMA FREQÜÊNCIA	
4004.87	02	100 kHz	
4004.87SA ⁽¹⁾	02	100 kHz	

(1) Possui 2 saídas analógicas

Módulos Conversores RS232/RS485 Isolados

Conversor RS232/RS485 Isolado:

Conversor RS232/RS485 isolado com controle de transmissão pelo sinal TXD ou pelo sinal RTS da RS232 (configurável através de jumper).

MODELO	DIFERENÇAS ENTRE OS MÓDULOS	
2232.00R	Montado em bastidor do MPC4004 de 1 passo	
4004.71R	Usado como unidade avulsa do MPC4004	

O módulo 4004.71R ocupa 1 (um) slot de um bastidor do MPC4004.

O módulo 2232.00R é formado por um bastidor de 1 (um) passo e um módulo MPC4004.

Conversor Ethernet / Serial Transparente:

O conversor Ethernet / Serial Transparente permite a conectividade de máquinas / processos com computadores supervisórios via rede ethernet. O conversor possui dois canais seriais independentes com padrão RS232 e padrão RS485.

MODELO	DIFERENÇAS ENTRE OS MÓDULOS	
2345.10	Montado em bastidor do MPC4004 de 1 passo	
4004.78	Usado como unidade avulsa do MPC4004	
4004.78W	WEB SERVER PARA MPC4004	

Observação: A alimentação da unidade 4004.78 é feita através de barramento interno

O módulo 4004.78 ocupa 1 (um) slot de um bastidor do MPC4004.

- O módulo 4004.78W ocupa 1 (um) slot de um bastidor da série MPC4004.
- O módulo 2345.10 é formado por um bastidor de 1 (um) passo e um módulo MPC4004.

Módulos Amplificadores para Válvula Proporcional

Estes módulos controlam diretamente 2 ou até 4 válvulas proporcionais. Os módulos possuem amplificadores que convertem proporcionalmente sinais de entrada, que variam de 0 a +10 Vcc, em corrente através do solenóide das válvulas.

MODELO	DIFERENÇAS ENTRE OS MÓDULOS
1901.00 1901.00M	Montado em bastidor do MPC4004 de 1 passo
4004.73 4004.73M	Usado como unidade avulsa do MPC4004

O módulo 4004.73 ocupa 1 (um) slot de um bastidor do MPC4004. O módulo 1901.00 é formado por um bastidor de 1 (um) passo 4004.21 e um módulo 4004.73

Interfaces Homem Máquina (IHM)

MODELO		DISPLAY	N° DE E TECLA F	BOTÕES TECLA K	Nº DE LED'S DE SINALIZAÇÃO
2002.95/M	(4)	LCD (2 x 20)	04	10	04
2002P96	(3) (4)	LCD (2 x 20)	12	10	12
2002.97/M	(4)	LCD (4 x 20)	04	10	04
4004.90	(2) (3) (5)	LCD (2 x 20)	-	10	06
4004.92	(1) (2) (3) (4)	LCD (4 x 20)	04	10	04
4004G92	(1) (2) (3) (4)	LCD (4 x 20)	04	10	12
4004P92	(3) (4)	LCD (4 x 20)	04	10	12
4004.94	(1) (2) (4)	LCD (4 x 20)	12	10	12
4004.95	(3) (4)	LCD (4 x 20)	-	10	06
4004.98	(4)	LCD (4 x 20)	12	10	12
4004.99	(2)	VFD (4 x 20)	12	10	12

(1) Display de Dígito Grande (9x5mm)

(2) Ao utilizar tais frontais, o módulo de fonte de alimentação usado em conjunto deve ser somente 4004.40, 4004.40/A ou 4004.40/F, devido ao consumo.

(3) Gabinete plástico

(4) Display com back-light

(5) Display com back-light negativo

• Especificações Elétricas

Entradas Digitais (Corrente Contínua)

	TIPO N	TIPO P
Tensão de trabalho	+24 Vcc (-20% / +40%)	+24 Vcc (-20% / +40%)
Nível de comutação "ON"	< 7 Vcc	> 15 Vcc
Nível de comutação "OFF"	> 15 Vcc	< 7 Vcc
Tempo de comutação "ON" para "OFF"	< 1 ms	< 1 ms
Tempo de comutação "OFF" para "ON"	< 1 ms	< 1 ms
Corrente de entrada	< 10 mA por entrada	< 10 mA por entrada
Isolação ótica do sistema	1.500 V	1.500 V

Entrada tipo N: a comutação é executada quando um dispositivo externo fornece 0 Vcc à entrada digital.

Entrada tipo P: a comutação é executada quando um dispositivo externo fornece 24 Vcc à entrada digital.

Saídas Digitais (Corrente Contínua)

	TIPO N	TIPO P
Tensão de trabalho	24 Vcc (-30% / +40%)	24 Vcc (-30% / +40%)
Máxima corrente de carga	2 A	2 A
Máxima corrente de pico	10 A (t <0,3ms)	10 A (t <0,3ms)
Corrente de fuga "OFF"	< 700 µA	< 700 μA
Tensão máxima "ON"	1,5 Vcc	1,5 Vcc
Tempo de comutação "ON" para "OFF"	< 1 ms	< 1 ms
Tempo de comutação "OFF" para "ON"	< 1 ms	< 1 ms
Isolação ótica do sistema	1.500 V	1.500 V

Saída tipo N: quando a comutação é executada, as cargas recebem o potencial de 0 Vcc da fonte de alimentação. Portanto, o comum das cargas deve estar ligado ao potencial de +24 Vcc da fonte de alimentação.

Saída tipo P: quando a comutação é executada, as cargas recebem o potencial de +24 Vcc da fonte de alimentação. Portanto, o comum das cargas deve estar ligado ao potencial de 0 Vcc da fonte de alimentação.

Importante: Usar no máximo 04 saídas ligadas simultaneamente para cada grupo de 08 saídas.

Entradas Digitais (Corrente Alternada)

ENTRADAS DIGITAIS (corrente alternada)			
Máxima corrente de entrada "ON" (por entrada)	5 mA (4004.35 – 110 Vca) 10 mA (4004.35A – 220 Vca)		
Tempo de comutação "ON" para "OFF"	< 20 ms		
Tempo de comutação "OFF" para "ON"	< 20 ms		
Isolação ótica do sistema	1.500 V		

Saídas Digitais (Corrente Alternada)

SAÍDA A RELÉ – 4004.37		
	Contato Seco – NA	
Tipo de contato	S0 a S4 – Saídas Independentes	
	S5,S6 e S7 – Saída com um comum	
Máxima tensão de comutação	+30 Vcc / 240 Vca	
Máxima corrente por saída	2 A	
Atraso na comutação	< 10 ms	
Isolação ótica do sistema	1.500 V	
Fonte de Alimentação Externa	+24 Vcc (-20% / +10%) /120 mA	

SAÍDA A RELÉ – 4004.57		
	Contato Seco – NA	
Tipo de contato	S0 a S3 – Saídas com um comum	
	S4 a S7 – Saídas com um comum	
Máxima tensão de comutação	+30Vcc / 240 Vca	
Máxima corrente por saída	2 A	
Atraso na comutação	< 10ms	
Isolação ótica do sistema	1.500 V	
Fonte de Alimentação Externa	+24 Vcc (-20% / +40%) / 120 mA	
Resistência inicial de contato p/ saídas	30mΩ	

SAÍDA A TRIAC – 4004.39		
Tensão de comutação	90 a 240 Vca (+/- 5%)	
Freqüência de comutação	50/60 Hz (+/- 5%)	
Máxima corrente por saída	2 A	
Corrente de fuga "OFF"	< 5 mA	
Isolação ótica do sistema	1.500 V	

Módulo Multiplex

MÓDULO MULTIPLEX	
Isolação ótica do sistema	1.500 V
Fonte de Alimentação Externa	+24 Vcc (-20% / +40%) /100 mA

Temperatura

TERMOPAR TIPO J		
Temperatura	0 a 500 °C	
Impedância de entrada	> 20 kΩ	
Linearização	Através de software	
Resolução	0,3 °C	
Exatidão	\pm 0,5 % do fundo de escala	
Drift temperatura	0,12 °C/°C	
Tempo de Resposta	1,6s	
Fonte de Alimentação	Através do barramento (interno)	

TERMOPAR TIPO K		
Temperatura	0 a 1200 °C	
Impedância de entrada	> 20 kΩ	
Linearização	Através de software	
Resolução	1 °C	
Exatidão	\pm 0,5 % do fundo de escala	
Drift temperatura	0,25 °C/°C	
Tempo de Resposta	1,6s	
Fonte de Alimentação	através do barramento (interno)	

TERMORESISTÊNCIA PT100 3 FIOS		
Temperatura	0 a 200 °C ou -50 °C a +150 °C	
Corrente de excitação	1 mA	
Resolução	0,1 °C	
Exatidão	±0,3 °C	
Drift temperatura	0,02 °C/°C	
Tempo de Resposta	1 varredura	
Fonte de Alimentação	através do barramento (interno)	

Importante: Para PT100 os valores acima são garantidos para impedância de cabo < ou = 100Ω .

Entradas e Saídas Analógicas

Entradas Analógicas:

ENTRADAS ANALÓGICAS EM TENSÃO		
Sinal de entrada	0 a +10 Vcc	
Impedância de entrada	> 40 kΩ	
Resolução	12 bits (2,5 mV)	
Exatidão	±35 mV	
Drift temperatura	0,1 mV/°C	
Tempo de Resposta	uma varredura	
Fonte de Alimentação	através do barramento (interno)	

ENTRADAS ANALÓGICAS EM CORRENTE				
Sinal de entrada em corrente 0 a 20 mA				
Impedância de entrada em corrente	250 Ω ou 500 Ω			
Resolução	12 bits (5,0 μA)			
Exatidão	±120 / 70 μA			
Drift temperatura	0,10 μA/°C			
Tempo de Resposta	uma varredura			
Fonte de Alimentação	através do barramento (interno)			

Importante: A opção por entrada em tensão ou corrente é feita através de jumpers.

Saídas Analógicas:

SAÍDA EM TENSÃO UNIPOLAR			
Sinal de saída em tensão	0 a +10 Vcc		
Impedância de saída em tensão	< 200 Ω		
Resolução	12 bits (2,5 mV)		
Exatidão	±25 mV		
Drift temperatura	0,3 mV/°C		
Tempo de Resposta	uma varredura		
Fonte de Alimentação	através do barramento (interno)		
Erro de conversão	<10mV		

SAIDA EM TENSÃO BIPOLAR			
Sinal de saída em tensão	-10 a +10Vcc		
Impedância de saída em tensão	< 200Ω		
Resolução	11 bits (5 mV)		
Exatidão	±100 mV		
Drift temperatura	0,5 mV/°C		
Tempo de Resposta	uma varredura		
Fonte de Alimentação	Através do barramento (interno)		

Importante: A opção por saída de 0 a 10Vcc ou ± 10Vcc é feita através de jumpers.

SAÍDA EM CORRENTE		
Sinal de saída em corrente	0 a 20 mA	
Máxima impedância da carga	<500 Ω	
Resolução	12 bits (5 μA)	
Exatidão	±215 μA	
Drift temperatura	1,0 μA/°C	
Tempo de Resposta	uma varredura	
Fonte de Alimentação	através do barramento (interno)	
Erro de conversão	<10µA	

Módulo Conversor RS232/RS485 Isolado

2232.00R e 4004.71R		
Tensão de Alimentação	110Vca ou 220Vca	
Controle de Transmissão	RXD/RTS da RS232	
Sinalização dos Sinais RX e TX	Através de LED's no frontal do módulo	

Observação: A alimentação do módulo é selecionada através de chave no interior da unidade; Os modelos 2232.00R e 4004.71R possuem proteção contra descargas atmosféricas.

Amplificador para Válvula Proporcional

AMPLIFICADOR PARA VÁLVULA PROPORCIONAL				
Tensão de Alimentação (Vs)	20 a 35 Vcc			
Sinal de Entrada (Vin)	0 a +10 Vcc			
Impedância de Entrada (Zin)	180 kΩ típico.			
Resistência da Solenóide (Rs)	Rs < (Vs – 5 Vcc) / Imáx.			
Faixa de ajuste de Corrente Mínima (Imín)	0 a > 30 % de Imáx			
Corrente Máxima (Imáx)	3 A (depende de Vs e Rs)			
Faixa de ajuste Freq.de Dither (Fdither)	100 a 300 Hz (trimpot interno)			
Faixa de ajuste Amplitude de Dither (Adither)	0 a aprox. 30% de Imáx (depende de Vs e Rs)			
Proteção contra inversão de polaridade	Fusível 500mA (F1)			

Módulo de Energia 4004.45

MÓDULO DE ENERGIA – 4004.45			
	17 ~ 280V entre Fase x Fase		
	10 ~ 160V entre Fase x Neutro		
Freqüência	47 ~ 65Hz		
Corrente nominal	0,1 ~ 5 A		
Corrente máxima de pico	10 ^a		
Precisão	0,5 % do fundo de escala		
Isolação galvânica	2500V		
Esquema de ligação	Estrela a quatro fios		
Falta momentânea de energia permissível	50ms máximo		
Temperatura de armazenagem	-20 a +70°C		
Temperatura de operação	0 a +55°C		
Tempo de leitura	1s (típico)		
Precisão de leitura	1% do fundo de escala		

Fontes de Alimentação (acessórios)

24Vcc / 3A - 2240.03	
Tensão de Alimentação	90 a 253Vca (47 a 63Hz)
Tensão de Saída CC	+24Vcc / 3A
Filtro Interno RF	Tipo duplo "pi"
Temp. de Trabalho	0 a +50°C
	2000V entre entrada/saída; entrada/chassis
ISUIAÇAU	500V entre saída/chassis

24Vcc / 5A – 2240.05R	
Tensão de Alimentação	90 a 253Vca (47 a 63Hz)
Tensão de Saída CC	+24Vcc / 5A
Filtro Interno RF	Tipo duplo "pi"
Temp. de Trabalho	0 a +55°C
	2000V entre entrada/saída; entrada/chassis
ISOlação	500V entre saída/chassis

• Configuração dos Módulos

Módulo de Processamento

PLACA	JUMPER	POSIÇÃO	FUNÇÃO
101.2806 "P" 101.2807 "N" 101.2874. "N" / "P" /Relé	ето	A	Encoder unidirecional
	512	В	Encoder bidirecional
	ST3	A	Encoder bidirecional
		В	Encoder unidirecional

Default: bidirecional

Observação: a CPU do MPC4004 é composta por duas placas de circuito impresso. Os jumpers de definição do encoder encontram-se na placa inferior. Para acessá-los é necessário remover a placar superior, retirando os parafusos de fixação.

Após alterar os jumpers ao remontar as placa verificar se a conexão entre as mesmas está correta.

Entrada Analógica

Os Módulos de Expansão com Entradas Analógicas podem ser configurados em tensão ou corrente. A opção deve ser feita através dos jumpers internos mostrados abaixo:

4004.60 e 4004 .	61			
PLACA	CANAL	JUMPER		
100 2950	E1	ST4	A – Corrente	B – Tensão
100.2850	E2	ST3	A – Corrente	B – Tensão
100 2950	E3	ST1	A – Corrente	B – Tensão
100.2059	E4	ST2	A – Corrente	B – Tensão

Default: entrada em tensão.

4004.60/A e 4004.61/A

PLACA	CANAL	JUMPER		
100 2952	E1	ST4	A – Corrente	B – Tensão
100.2853	E2	ST3	A – Corrente	B – Tensão
E3 ST1 100.2855 E4 ST2	A – Corrente	B – Tensão		
	E4	ST2	A – Corrente	B – Tensão

Default: entrada em tensão.

4004.60N e 4004.61N

PLACA	CANAL	JUMPER			
100 2949	E1	ST4	A/C – Corrente (250 Ω)	A/D – Corrente (500 Ω)	B/D – Tensão
100.2040	E2	ST3	A/C – Corrente (250 Ω)	A/D – Corrente (500 Ω)	B/D – Tensão
100 2940	E3	ST1	A/C – Corrente (250 Ω)	A/D – Corrente (500 Ω)	B/D – Tensão
100.2049	E4	ST2	A/C – Corrente (250 Ω)	A/D – Corrente (500 Ω)	B/D – Tensão

Os Módulos de Leitura de Temperatura – **4004.85** e **4004.85/P2** também possuem **04** canais de entrada analógica, podendo ser configurada em tensão ou corrente. A opção deve ser realizada através dos jumpers internos:

PLACA	CANAL		JUMPER		
	E1		ST4	A – Corrente	B – Tensão
100 2957	E2		ST3	A – Corrente	B – Tensão
100.2057	E3		ST2	A – Corrente	B – Tensão
	E4		ST1	A – Corrente	B – Tensão
100.2862 ENDEREÇO S		ST2	F – Posição fixa p/ utilização do módulo		

Default: entrada em corrente.

Observação: Máximo de 1 módulo por bastidor.

Saída Analógica

PLACA	JUMPER	POSIÇÃO	FUNÇÃO	
	ST5	А	SAÍDA ANALÓGICA (S1) EM TENSÃO 0 A 10V	
	ST6 ST7	В	SAÍDA ANALÓGICA (S1) EM TENSÃO ± 10V	
	ST8	А	SAÍDA ANALÓGICA (S2) EM TENSÃO 0 A 10V	
	ST9 ST10	В	SAÍDA ANALÓGICA (S2) EM TENSÃO ± 10V	
100.2848	ST11	А	SAÍDA ANALÓGICA 1 CONFIGURADA PARA 0 A +10Vcc	
	3111	В	SAÍDA ANALÓGICA 1 CONFIGURADA PARA ±10Vcc	
	ST12	А	SAÍDA ANALÓGICA 2 CONFIGURADA PARA 0 A +10Vcc	
		В	SAÍDA ANALÓGICA 2 CONFIGURADA PARA ±10Vcc	
	ST13	А	SAÍDA ANALÓGICA 3 CONFIGURADA PARA 0 A +10Vcc	
		В	SAÍDA ANALÓGICA 3 CONFIGURADA PARA ±10Vcc	
	ST14	А	SAÍDA ANALÓGICA 4 CONFIGURADA PARA 0 A +10Vcc	
	3114	В	SAÍDA ANALÓGICA 4 CONFIGURADA PARA ±10Vcc	

PLACA	JUMPER	POSIÇÃO	FUNÇÃO	
	ST3	А	SAÍDA ANALÓGICA (S3) EM TENSÃO 0 A 10V	
100.2849	ST4 ST5	В	SAÍDA ANALÓGICA (S3) EM TENSÃO ± 10V	
	ST6 ST7	А	SAÍDA ANALÓGICA (S4) EM TENSÃO 0 A 10V	
	ST8	В	SAÍDA ANALÓGICA (S4) EM TENSÃO ± 10V	

Módulo Contagem Rápida

4004.87	e 4004.87SA		
PLACA	JUMPER	POSIÇÃO	FUNÇÃO
	ST1	А	Encoder +5 Vcc
101.2860	311	B ^(*)	Encoder +12 Vcc
	$ST^{(2)} \circ ST^{(1)}$	A	Encoder unidirecional
	310	B ^(*)	Encoder bidirecional
	$ST10^{(2)} \circ ST11^{(1)}$	A	Entrada P
	SITURESTIT	B ^(*)	Entrada N
	ST12 (2) 0 ST12 (1)	A ^(*)	Saída N
	5112 65115	B	Saída P

(1) Contador Rápido 1

(2) Contador Rápido 2

(*) Posição Default

Observação: máximo de 1 módulo por bastidor.

Módulos Conversores RS232/RS485

Os Módulos Conversores 2232.00R e 4004.71R podem ter a transmissão controlada pelo sinal TX ou RTS da RS232.

A opção deve ser feita através do jumper interno mostrado abaixo:

PLACA	JUMPER	POSIÇÃO	FUNÇÃO	
101.2873	874	A ^(*)	Controle de Transmissão via TX da RS232	
	311	В	Controle de Transmissão via RTS da RS232	

(*) Posição default

Observação: O controle de transmissão por RTS só é usado em softwares que disponibilizam este sinal, sendo que na maioria das aplicações o controle da direção do fluxo das informações é feito pelo próprio sinal de "TX".

Módulo Slave de Comunicação

Os Módulos Slave de Comunicação 4004.72R e 4004.72M podem ter o padrão elétrico do canal de comunicação configurados como RS232 ou RS485.

A opção deve ser feita através do jumper interno mostrado abaixo:

PLACA	JUMPER	POSIÇÃO	FUNÇÃO
101.2910	070	A	Canal 2 como RS232
	512	B ^(*)	Canal 2 como RS485
	ST3	Α	Canal 1 como RS232
		B ^(*)	Canal 1 como RS485

(*) Posição default

Jumpers de Endereçamento

O endereçamento na série MPC4004 é normalmente feito através de um jumper que varia de A até H.

Algumas unidades digitais e analógicas da série MPC4004 receberam um jumper adicional , denominado **STG** ou Jumper de Grupo.

Este jumper permite que haja um aumento da quantidade de pontos digitais e analógicos da série MPC4004.

Este aumento só pode ser praticado nos drivers MPC4004R e MPC4004T.

Os demais drivers também poderão utilizar as unidades com Jumper de Grupo, porém nestes casos o jumper STG deverá permanecer em sua posição default.

Posição default do jumper STG:

- **STG em A** = módulos digitais
- **STG em B** = módulos analógicos

Unidades que receberam jumper de grupo.

DIGITAIS

CÓDIGO	DESCRIÇÃO
4004.31G	Módulo de expansão com 16S "N"
4004.31H	Módulo de expansão com 16S "N" (Troca a Quente)
4004.32G	Módulo de expansão com 16S "P"
4004.32H	Módulo de expansão com 16S "P" (Troca a Quente)
4004.33G	Módulo de expansão com 16E "N"
4004.33H	Módulo de expansão com 16E "P/N" (Troca a Quente)
4004.34G	Módulo de expansão com 16E "P"
4004.38G	Módulo de expansão com 8E "N" ou "P"
4004.53G	Módulo de expansão com 16E/16S "N"
4004.53H	Módulo de expansão com 16E "P" ou "N" /16S "N" (Troca a Quente)
4004.54G	Módulo de expansão com 16E /16S "P"
4004.54H	Módulo de expansão com 16E "P" ou "N" /16S "P" (Troca a Quente)
4004.55G	Módulo de expansão com 32 entradas "N"
4004.55H	Módulo de expansão com 32 entradas "P" ou "N" (Troca a Quente)
4004.56G	Módulo de expansão com 32 entradas "P"
4004.58G	Módulo de expansão com 16E "P" ou "N" /16S relé

ANALÓGICAS

CODIGO	DESCRIÇAO
4004.62G	Módulo de expansão 8E Analógicas (tensão ou corrente)
4004.62P	Módulo de expansão 4E Analógicas (tensão ou corrente)
4004.63G	Módulo de expansão 8S Analógicas (tensão)
4004.63P	Módulo de expansão 4S Analógica (tensão)
4004.64G	Módulo de expansão 8S Analógica (corrente)
4004.64P	Módulo de expansão 4S Analógica (corrente)

Resumo geral das quantidades de uma mesma placa no bastidor para os drivers MPC4004R e MPC4004T:

TIPO DE I/O	QUANT. CS	JUMPERS
08 Entradas / 08 Saídas	08	ST1: A-H
16 Entradas / 16 Saídas	15	ST1:A-H STG: A e B
16 Entradas	15	ST1 :A-H STG: A e B
16 Saídas	15	ST1:A-H STG: A e B
32 Entradas	15	ST1:A-H STG: A e B
Temperatura	08	ST2: A-H
E/S Analógica	08	ST1: A-H
Módulos MAC	15	ST1:A-H STG: A e B
Contador Rápido	01	ST2: G e H
Multiplex	01	ST2: A-H
Específico	08	ST2: A-H
Observação: O CS do contador rápido é gerado baseado em uma EPLD, não sendo possível alterar seu CS.

O Jumper de Grupo permite que uma determinada placa possa ser configurada para trabalhar no grupo A ou no grupo B.

Cada grupo possui 8 endereçamentos, desta forma o módulo que possuir o Jumper de Grupo pode ser utilizado em 16 slots.

Como a CPU possui uma expansão digital, o número máximo será de 15 módulos a serem utilizados.

Regras para a inclusão de unidades no(s) bastidor(es) (somente drivers MPC4004R e MPC4004T):

- Os módulos 4004.60 e 4004.61 só podem ser colocadas num total de 08;
- Os módulos digitais com 8 pontos, como por exemplo 4004.37, 4004.51, 4004.39, etc., só podem ser inseridos no total de 07 módulos;
- O Contador Rápido e o Multiplex, só podem ser alocados uma única vez;

Observação: O contador rápido utiliza 02 CS's fixos: G e H (GRUPO B).

Caso os CS do contador já tenham sido utilizados por outro módulo, o WinSUP 2 informa o usuário. A placa não possui nenhum jumper de endereçamento.

• Esquemas de Ligações para os Módulos da Série MPC4004

Os esquemas de ligações para os Módulos de Processamento, bem como para os módulos de expansão são mostrados nas próximas figuras.

MÓDULOS DE ALIMENTAÇÃO

Fig. 3. - Módulo de Alimentação **4004.40D (OBSOLETA)**

Fig. 4. - Módulo de Alimentação 4004.40G

MÓDULOS DE PROCESSAMENTO

MÓDULOS DE EXPANSÃO DIGITAL (CORRENTE CONTÍNUA)

Fig. 8. - Módulo de Expansão **4004.33 e 4004.33G** 16 E tipo N.

Módulo de Expansão **4004.32, 4004.32H e 4004.32G** 16 S tipo P

Módulo de Expansão **4004.34 e 4004.34G** 16 E tipo P

Fig. 9. - Módulo de Expansão **4004.33H** Esquema de ligações externas para entradas tipo "N".

Fig. 10. Módulo de Expansão **4004.38G** Esquema de ligações externas para entradas tipo "N" "P"

Módulo de Expansão **4004.33H** Esquema de ligações externas para entradas tipo "P".

Módulo de Expansão **4004.38G** Esquema de ligações externas para entradas tipo

Fig. 13. Módulo de Expansão **4004.53H** Esquema de ligações externas para entradas tipo "N".

Módulo de Expansão **4004.53H** Esquema de ligações externas para entradas tipo "P".

Módulo de Expansão **4004.54H** Esquema de ligações externas para entradas tipo "P".

Fig. 15. Módulo de Expansão **4004.55 e 4004.55G** 32 E tipo N

Módulo de Expansão **4004.56 e 4004.56G** 32 E tipo P

Módulo de Expansão **4004.55H** Esquema de ligações externas para entradas tipo "P".

MÓDULOS DE EXPANSÃO DIGITAL (Entrada Digital tipo "N" ou "P" e saída a Relé)

MÓDULOS DE EXPANSÃO DIGITAL (CORRENTE ALTERNADA)

MÓDULO MULTIPLEX

Fig. 22.- Módulo Multiplex 4004.70

MÓDULOS DE EXPANSÃO ANALÓGICA

Capítulo 3 – Características da série MPC4004

Módulo Analógico Compacto **4004.63P** 4 S Analógicas

Fig. 28. Módulo Analógico Compacto 4004.63G 8 S Analógicas

Capítulo 3 – Características da série MPC4004

Módulo Analógico Compacto **4004.64P** 4 S Analógicas

Fig. 29. Módulo Analógico Compacto **4004.64G** 8 S Analógicas

MÓDULOS DE LEITURA DE TEMPERATURA

Módulo de Leitura de Temperatura **4004.66/K** Termopar tipo K com 8 canais

Fig. 32. - Módulo de Leitura de Temperatura **4004.85** e **4004.85/P2** Termoresistência PT100 com 4 canais / 04 Entradas Analógicas

Fig. 33. - Módulo de Leitura de Temperatura 4004.75/P e 4004.75/P2 4004.76/P2

Termoresistência PT100 com 4 canais

Módulo de Leitura de Temperatura 4004.76/P e

Termoresistência PT100 com 8 canais

OUTRAS CONEXÕES PARA MÓDULOS DE 3 FIOS

Para a utilização de PT100 2 ou 4 fios nos módulos de 3 fios, devem-se executar as conexões conforme os desenhos abaixo:

MÓDULOS DE CONTAGEM RÁPIDA

Observação: para configurar o encoder, entradas e saídas como tipo "N" ou "P" ver pág. 34

MÓDULO CONVERSOR RS232/RS485 ISOLADO

Fig. 36. – Módulo Conversor RS232/RS485 Isolado 2232.00R ou 4004.71R

MÓDULO CONVERSOR ETHERNET / SERIAL TRANSPARENTE

Fig. 37. – Módulo Conversor Ethernet / Serial Transparente 2345.00 / 2345.10 ou 4004.78 / 4004.78W

MODULO FONTE CHAVEADA ENTRADA 90 a 253VCA / SAÍDA 24VDC / 3A

Fig. 38. – Módulo fonte chaveada 3A - 2240.03

MODULO FONTE CHAVEADA ENTRADA 90 a 253VCA SAÍDA 24VDC / 5A

MODULO AMPLIFICADOR PARA VÁLVULA PROPROCIONAL

* SEM O CONSUMO DAS VÁLVULAS

Fig. 40. – Módulo Amplificador para válvula proporcional - 4004.73

* SEM O CONSUMO DAS VÁLVULAS

Fig. 41. – Módulo Amplificador para válvula proporcional - 4004.73M

MODULO DE ENERGIA

Fig. 42. - Módulo de Energia **4004.45** Esquema de ligação com transformador de corrente maior que 5 A

Módulo de Energia **4004.45** Esquema de ligação para sistemas com corrente menor que 5A

MODULO SLAVE DE COMUNICAÇÃO

 Modulo Slave de Comunicação 4004.72R e 400 Esquema de ligação com canais RS232

Observação: É possível utilizar um canal como RS485 e outro como RS232

• Esquemas de Ligações para os Bastidores da Série MPC4004R e MPC4004T

Montagem Horizontal de Bastidores (recomendado)

Fig. 45. - Distâncias recomendadas para ligação horizontal de bastidores

Montagem Vertical de Bastidores

Fig. 46. - Distâncias recomendadas para ligação vertical de bastidores

Bastidores para Trilho DIN

A série MPC4004 com o sufixo "T" permitem a montagem do bastidor em trilho DIN e a série com o sufixo "RT" permite expansão do barramento.

Códigos dos Bastidores:

- 4004.22T Bastidor para Trilho DIN 2 Slots 4004.24T – Bastidor para Trilho DIN 4 Slots
- 4004.241 Bastidor para Trilho DIN 4 Slots 4004.26T – Bastidor para Trilho DIN 6 Slots
- 4004.28T Bastidor para Trilho DIN 8 Slots
- 4004.2AT Bastidor para Trilho DIN 10 Slots
- 4004.2CT Bastidor para Trilho DIN 12 Slots
- 4004.26RT Bastidor para Trilho DIN 6 Slots c/ Expansão
- 4004.28RT Bastidor para Trilho DIN 8 Slots c/ Expansão
- 4004.2ART Bastidor para Trilho DIN 10 Slots c/ Expansão
- 4004.2CRT Bastidor para Trilho DIN Slots c/ Expansão

4. Características dos Drivers MPC4004, MPC4004G e MPC4004L

Este capítulo visa à orientação do usuário em relação ao endereçamento, mapeamento de memória e configuração dos drivers MPC4004, MPC4004G e MPC4004L. A relação das CPU's que compõem cada driver é mostrada abaixo:

DRIVER	CPU's
MPC4004L	4004.11/L e 4004.12/L
MPC4004	4004.01, 4004.02, 4004.11 e 4004.12
MPC4004G	4004.05B, 4004.05E, 4004.06B, 4004.06E, 4004.09B e 4004.09E

• Mapeamento de Memória

Mapeamento de Memória das CPU's 4004.11/L e 4004.12/L

ENDEREÇO	DESCRIÇÃO	
7FFF 1000	ÁREA DE USO INTERNO DO SISTEMA	
0FFF 0FD0	REGISTROS ESPECIAIS	
0FCF 0784	1.062 REGISTROS LIVRES	
0783 0780	RESERVADO PARA RESTO DAS INSTRUÇÕES DIV, DIVB,DIVBL, DVBLL	
077F 0480	384 REGISTROS LIVRES	
047F 0400	32 PRESETS E EFETIVOS DE TEMPORIZADORES OU CONTADORES	
03FF 0000	MEMÓRIA DE ESTADOS INTERNOS	

Mapeamento de Memória das CPU's: 4004.01, 4004.02, 4004.11 e 4004.12.

ENDEREÇO	DESCRIÇÃO		
7FFF 1000	ÁREA DE USO INTERNO DO SISTEMA		
0FFF 0FD0	REGISTROS ESPECIAIS		
0FCF 0880	928 REGISTROS LIVRES		
087F 0840	32 EFETIVOS DE SAÍDAS ANALÓGICAS	Módulo Analógico	Compacto (MAC)
083F 0800	32 EFETIVOS DE ENTRADAS ANALÓGICAS	Módulo Analógico	Compacto (MAC)
07FF 07F8	04 EFETIVOS DAS ENTRADAS DE 0 – 10V	Módulo 4004.85	
07F7 07F0	04 EFETIVOS DAS ENTRADAS DO PT100	Módulo 4004.85	
07EF 0784	54 REGISTROS LIVRES		
0783 0780	RESERVADO PARA RESTO DAS INSTRUÇÕES DIV, DIV	B,DIVBL, DVBLL	
077F 0700	64 REGISTROS LIVRES		
06FF 06F0	8 EFETIVOS DE TEMPERATURA		Canais 1 a 8
06EF 06E0	8 EFETIVOS DE SAÍDAS ANALÓGICAS		Canais 1 a 8
06DF 06D0	8 EFETIVOS DE SAÍDAS ANALÓGICAS		Canais 9 a 16
06CF 06C0	8 EFETIVOS DE TEMPERATURA		Canais 9 a 16
06BF 0690	24 REGISTROS LIVRES		
068F 0650	32 PRESETS DA MOVIMENTAÇÃO DE DADOS ATRAVÉS	S DE EI	
064F 0600	40 REGISTROS LIVRES		
05FF 05F0	8 EFETIVOS DE ENTRADAS ANALÓGICAS		Canais 1 a 8
05EF 05E0	8 EFETIVOS "ORIGINAIS" QUANDO A INSTRUÇÃO FATO	DR É USADA	Canais 1 a 8
05DF 05D0	8 EFETIVOS DE ENTRADAS ANALÓGICAS		Canais 9 a 16
05CF 0590	32 REGISTROS LIVRES		
058F 0550	32 PRESETS DE COMPARAÇÃO AUTOMÁTICA DE REGISTROS		
054F 0548	4 REGISTROS LIVRES		
0547 0540	2 PRESETS E EFETIVOS DOS TEMPORIZADORES DE 1 ms		
053F 0500	ÁREA DE CONTAGEM RÁPIDA DO MÓDULO DE PROCE	SSAMENTO (Modo	Ângulo)
04FF 04E0	MÓDULOS DE CONTAGEM RÁPIDA		
04DF 04D0	ÁREA DE CONTAGEM RÁPIDA DO MÓDULO DE PROCE	SSAMENTO	
04CF 04C0	PORCENTAGEM DE ENERGIA ENTREGUE ÀS RESISTÊ	NCIAS	Canais 1 a 8
04BF 0480	32 REGISTROS LIVRES		
047F 0400	32 PRESETS E EFETIVOS DE TEMPORIZADORES OU C	ONTADORES	
03FF 0000	MEMÓRIA DE ESTADOS INTERNOS		

Mapeamento de Memória das CPU's: 4004.05E, 4004.06E e 4004.09E.

ENDEREÇO	DESCRIÇÃO	
E7FF 1000	27.648 REGISTROS LIVRES	
0FFF 0FD0	REGISTROS ESPECIAIS	
0FCF 0880	928 REGISTROS LIVRES	
087F 0840	32 EFETIVOS DE SAÍDAS ANALÓGICAS	Módulo Analógico Compacto (MAC)
083F 0800	32 EFETIVOS DE ENTRADAS ANALÓGICAS	Módulo Analógico Compacto (MAC)
07FF 07F8	04 EFETIVOS DAS ENTRADAS DE 0 – 10V	Módulo 4004.85
07F7 07F0	04 EFETIVOS DAS ENTRADAS DO PT100	Módulo 4004.85
07EF 0784	54 REGISTROS LIVRES	
0783	RESERVADO PARA RESTO DAS INSTRUÇÕES DIV,DIV	B,DIVBL,DVBLL
077F 0700	64 REGISTROS LIVRES	
06FF 06F0	8 EFETIVOS DE TEMPERATURA	Canais 1 a 8
06EF 06E0	8 EFETIVOS DE SAÍDAS ANALÓGICAS	Canais 1 a 8
06DF 06D0	8 EFETIVOS DE SAÍDAS ANALÓGICAS	Canais 9 a 16
06CF 06C0	8 EFETIVOS DE TEMPERATURA	Canais 9 a 16
06BF 0690	24 REGISTROS LIVRES	
068F 0650	32 PRESETS DA MOVIMENTAÇÃO DE DADOS ATRAVÉS	S DE EI
064F 0600	40 REGISTROS LIVRES	
05FF 05F0	8 EFETIVOS DE ENTRADAS ANALÓGICAS	Canais 1 a 8
05EF 05E0	8 REGISTROS LIVRES	
05DF 05D0	8 EFETIVOS DE ENTRADAS ANALÓGICAS	Canais 9 a 16
05CF 0590	32 REGISTROS LIVRES	
058F 0550	32 PRESETS DA COMPARAÇÃO AUTOMÁTICA DE REG	ISTROS
054F 0548	4 REGISTROS LIVRES	
0547 0540	2 PRESETS E EFETIVOS DOS TEMPORIZADORES DE 1	ms
053F 0500	ÁREA DE CONTAGEM RÁPIDA DO MÓDULO DE PROCE	SSAMENTO (Modo Ângulo)
04FF 04E0	MÓDULOS DE CONTAGEM RÁPIDA	
04DF 04D0	ÁREA DE CONTAGEM RÁPIDA DO MÓDULO DE PROCE	SSAMENTO
04CF 04C0	PORCENTAGEM DE ENERGIA ENTREGUE ÀS RESISTÊ	NCIAS Canais 1 a 8
04BF 0480	32 REGISTROS LIVRES	
047F 0400	32 PRESETS E EFETIVOS DE TEMPORIZADORES OU C	ONTADORES
03FF 0000	MEMÓRIA DE ESTADOS INTERNOS	

Descrição dos Estados Internos de 0000 até 03FF (todos os drivers)

ENDEREÇO	DESCRIÇÃO				
03EE	DIREÇÃO DE CONTAGEM DE PUILSO PARA INSTRUÇÃO CTOPU (REMANENTE)				
03FF	WATCH DOG TIMER (ATIVO OLIANDO O WDT "ENTRAR") DESLIGADO NA PASSAGEM PARA	PROG			
03FD	SENTIDO DO CONTADOR RÁPIDO 2	1.00			
03FC	SENTIDO DO CONTADOR RÁPIDO 1				
03FB	SINAL DA SAÍDA ANALÓGICA DO CONTADOR RÁPIDO 2				
03FA	SINAL DA SAÍDA ANALÓGICA DO CONTADOR RÁPIDO 1				
03F9	10 ESTADOS INTERNOS REMANENTES				
03EF	ESTADOS INTERNOS DE FALHA DE COMUNICAÇÃO COM AS ESTAÇÕES (EI REMANENTE)				
03D0	HABILITA MODO MESTRE (EI REMANENTE)				
03CF 0380	80 ESTADOS INTERNOS REMANENTES				
037F 0207	377 ESTADOS INTERNOS AUXILIARES				
0206 0200	ESTADOS INTERNOS MOTOR DE PASSO				
01FF 01F8	ESTADOS INTERNOS TERMOPAR ABERTO Canais	s9a16			
01F7 01F0	ESTADOS INTERNOS TERMOPAR INVERTIDO Canais	s9a16			
01EF 0180	RESERVADO PARA PROGRAMAÇÃO DAS SAÍDAS DIGITAIS				
017F 0160	32 ESTADOS INTERNOS RELACIONADOS À MOVIMENTAÇÃO DE DADOS ATRAVÉS DE ESTA	ADOS IN	TERNO	s	
015F 0100	RESERVADO PARA PROGRAMAÇÃO DAS ENTRADAS DIGITAIS				
00FF	OVERFLOW NA SOMA, SUBTRAÇÃO E SCL	(2)	(3)		(5)
00FE	MUDANÇA DE VALOR ATRAVÉS DE TECLADO	(2)			(5)
00FD	EI ACESSO À COMUNICAÇÃO SERIAL CANAL A (RS232)	(2)			(5)
00FC	ON QUANDO SERIAL OCUPADA (PRINT)	(2)			(5)
00FB	HABILITA / DESABILITA USO DO CANAL SERIAL (PRINT)(1)				(5)
00FA	ON QUANDO RESULTADO DE "COMPARE" <	(2)		(4)	
00F9	ON QUANDO RESULTADO DE "COMPARE" =	(2)		(4)	
00F8	ON QUANDO RESULTADO DE "COMPARE" >	(2)		(4)	
00F7		(2)			
00F6		(2)			
00F5		(2)			
00F4		(2)			
00F3		(2)			
00F1	BLOOLIEIO DE TECLADO PARA EDIÇÃO (1)	(2)			
00F0	BIP DE TECLADO	(2)			
00FF	POSIÇÃO ZERO CONTADOR RÁPIDO 2	(=)			
00EE	FEETIVO < SETPOINT CONTADOR RÁPIDO 2				
00ED	EFETIVO > SETPOINT CONTADOR RÁPIDO 2				
00EC	HABILITA SAÍDA FEFTIVO > SETPOINT CONTADOR RÁPIDO 2				
00EB	HABILITA SAÍDAS CONTADOR RÁPIDO 2				
00EA	BLOQUEIO DE CONTAGEM DO CONTADOR RÁPIDO 2				
00E9	LOAD SETPOINT INICIAL CONTADOR RÁPIDO 2				
00E8	RESET EFETIVO CONTADOR RÁPIDO 2				
00E7	POSIÇÃO ZERO CONTADOR RÁPIDO 1				
00E6	EFETIVO < SETPOINT CONTADOR RÁPIDO 1				
00E5	EFETIVO ≥ SETPOINT CONTADOR RÁPIDO 1				
00E4	HABILITA SAÍDA EFETIVO ≥ SETPOINT CONTADOR RÁPIDO 1				
00E3	HABILITA SAÍDAS CONTADOR RÁPIDO 1				
00E2	BLOQUEIO DE CONTAGEM DO CONTADOR RÁPIDO 1				

ENDEREÇO	DESCRIÇÃO		
00E1	LOAD SETPOINT INICIAL CONTADOR RÁPIDO 1		
00E0	RESET EFETIVO CONTADOR RÁPIDO 1		
00DF	BLOQUEIO DE CONTAGEM (Simulador de Ângulo)		
00DE	FICA ATIVO DURANTE A EDIÇÃO DE VALORES (modo RUN)	(2)	
00DD	ON TECLA <s2> FECHADA / OFF TECLA <s2> ABERTA</s2></s2>	(2)	
00DC	ON TECLA <s1> FECHADA / OFF TECLA <s1> ABERTA</s1></s1>	(2)	
00DB	APAGA DISPLAY		(5)
0000	FICA ATIVO DURANTE UMA VARREDURA, TODA VEZ QUE HOUVER UMA MUDANÇA	DE (2)	(5)
UUDA	VALOR ATRAVÉS DO CANAL DE COMUNICAÇÃO SERIAL CANAL A (RS232)	(2)	(5)
00D9	TENTATIVA DE EDIÇÃO COM TECLADO BLOQUEADO	(2)	
0008	NA TRANSIÇÃO DE OFF PARA ON CARREGA TELA ALVO NO DISPLAY	(1)	(5)
0000	(o número da tela é definido no registro 0FECh)	(1)	(0)
00D7	ON DURANTE PRIMEIRA VARREDURA QUANDO ZERO EXTERNO LIGADO (Modo Ang	ulo)	
00D6	EFETIVO < SETPOINT CONTADOR RAPIDO (Modo Normal)	(2)	
00D5	EFETIVO = SETPOINT CONTADOR RAPIDO (Modo Normal)	(2)	
00D4	EFETIVO > SETPOINT CONTADOR RAPIDO (Modo Normal)	(2)	
00D3	HABILITA SAIDAS CONTADOR RAPIDO (Modo Normal)	(1)	
00D2	BLOQUEIA CONTAGEM DO CONTADOR RAPIDO (Modo Normal)	(1)	
00D1	LOAD VALOR INICIAL NO EFETIVO DO CONTADOR RAPIDO (Modo Normai)	<u>(1)</u>	
00D0		(1)	
OUCF	EDIÇAO DE SENHA ERRADA		
OUCE			
UUCD	AGESSU A SERIAL CANALIB (R5485)		
00CC	VALOR ATRAVÉS DO CANAL DE COMUNICAÇÃO SERIAL CANAL B (RS485)	^{DE} (2)	(5)
00CB 00C0	RESPECTIVAMENTE LED'S DE 1 a 12. (Qualquer LED do frontal acende quando é ativado	o o seu estado interno)	
00BF	TRIGGER DE 1 SEG (somente CPU's com relógio)		
00BE	HABILITA PROTOCOLO MODBUS		
00BD	LIGADO PRINT NO CANAL B (RS485) / DESLIGADO PRINT NO CANAL A (RS232)		
00BC	ESTADO INTERNO REFERENTE À TECLA ESC		
00BB	RESPECTIVAMENTE BOTÕES DE F1 a F12		
00B0	(Quando um botão é ativado no frontal do MPC4004 o seu respectivo estado interno passa	para ON)	
00AF	DESABILITA ZERO EXTERNO CONTADOR RAPIDO 2		
00AE	DESABILITA ZERO EXTERNO CONTADOR RAPIDO 1		
00AD	SETA PARA BAIXO DA IHM		
00AC	SETA PARA CIMA DA IHM		
00AB	HABILITA LEITURA DE CARACTERES DU CANAL RS232		
0044	UFF = MESTRE NA RS485 / UN=MESTRE NA RS232 (SUMENTE PARA CPU CUM PRU	CESSADOR XA)	
00A9	BUTUES KTA K9 = (UUAU a UUAO) E KU = (AU9) (Quanda um batão é ativada na frantal da MDC4004 a sou respectivo estado interno passa		
0040	CQUAINDO UNI DOLAO E ALIVADO NO NONIAN DO MIECADO E DE TEMPEDATURA ADÁS DURTURA		
0098	DE TERMOPAR	Canais 1 a 8	
0097 0090	ESTADOS INTERNOS HABILITAM CONTROLE DE OVER-SHOOT	Canais 1 a 8	
008F 0088	ESTADOS INTERNOS TERMOPAR ABERTO	Canais 1 a 8	
0087 0080	ESTADOS INTERNOS TERMOPAR INVERTIDO	Canais 1 a 8	
007F 0078	ESTADO INTERNO DE ALARME DE MÁXIMO	Canais 1 a 8	
0077 0070	ESTADOS INTERNOS DE ALARME DE MÍNIMO	Canais 1 a 8	
006F 0068	ESTADOS INTERNOS HABILITAM CONTROLE DE SOFT-START	Canais 1 a 8	

ENDEREÇO	DESCRIÇÃO	
0067 0060	ESTADOS INTERNOS DE AQUECIMENTO Canais 1 a 8	
005F 0040	32 ESTADOS INTERNOS DA COMPARAÇÃO AUTOMÁTICA DE REGISTROS	
003F 0030	16 ESTADOS INTERNOS DE ÂNGULOS (Modo Ângulo ou Modo Ângulo Simulado)	
002F 0022	14 ESTADOS INTERNOS AUXILIARES	
0021	HABILITA TEMPORIZADOR 02 (Máx. 9,999 segundos)	
0020	HABILITA TEMPORIZADOR 01 (Máx. 9,999 segundos)	
001F 0000	32 TEMPORIZADORES/CONTADORES (1 a 32) (Máx. 99,99 segundos)	

OBSERVAÇÕES:

- estados escritos como saída no software de usuário, para uso no software básico.
- (1) (2) (3) (4) (5) estados de leitura apenas pelo software usuário.
- ativado quando há um overflow na soma ou NÃO há empréstimo na subtração.
- quando não existe HABILITA ativo, os estados são os da última comparação com HABILITA ativo.
- estados internos que não podem ser forçados pelo WinSUP 2.

REGISTROS ESPECIAIS		
0FFF 0FF0	RESERVADO	
OFEF OFEE	NÚMERO DA TELA ATUAL	
0FED 0FEC	NÚMERO DA TELA ALVO (SOFTWARE USUÁRIO) (1)	
0FEB 0FEA	NÚMERO DA TELA DE NAVEGAÇÃO PARA ACESSO À TELA DE AUXÍLIO À MANUTENÇÃO ATRAVÉS DE S1	
0FE9 0FE6	RESERVADO	
0FE5 0FE4	CONTADOR DE CARACTERES RECEBIDOS	
0FE3 0FE2	GAVETA RECUPERADA	
0FE1 0FE0	NÚMERO DE UTILIZAÇÕES DA MEMÓRIA FLASH	
0FDF 0FD0	RESERVADO	

A parte mais significativa do registro deve ser igual a 00, pois a parte menos significativa representa o (1) número da tela em hexadecimal "FF=256".
Módulos Digitais

Entradas Digitais

Os módulos de entradas digitais detectam e convertem sinais de comutação de entrada em níveis lógicos de tensão no controlador programável. Essas entradas poderão ser botoeiras, chaves limite, sensores de proximidade ou qualquer outro dispositivo capaz de comutar tensão 24Vcc, 110 Vca ou 220 Vca.

Cada entrada é isolada do sistema através de um acoplador ótico sendo seu estado "ON" sinalizado através de LED's no frontal do módulo. Podem-se ter módulos de 8, 16 ou 32 entradas, num total máximo de 120.

Mapeamento de memória

ESTADOS INTERNOS RELACIONADOS COM AS ENTRADAS DIGITAIS				
017F 0100	ÁREA RESERVADA PARA MAPEAMENTO DAS ENTRADAS DIGITAIS			

Importante: Os estados internos não utilizados poderão ser usados como estados internos auxiliares. Ao programar os estados de comparação das saídas analógicas, verificar se não há sobreposição com os estados das entradas digitais.

Não é possível utilizar o sétimo módulo de expansão (entrada) em conjunto com o módulo de temperatura pois há sobreposição dos estados internos.

Saídas Digitais

Os módulos de saídas digitais convertem sinais lógicos usados no controlador programável em saídas (corrente contínua – 24 Vcc ou alternada – relés ou triac), capazes de energizar bobinas, relés, chaves contatoras, lâmpadas, solenóides ou gualquer outra carga.

As saídas são isoladas do sistema através de acopladores óticos, sendo a indicação de saída ativada através de LED's no frontal do módulo. Podem-se ter módulos de 8 ou 16 saídas, num total máximo de 120.

Mapeamento de Memória

Estados internos relacionados com as saídas digitais:

ESTADOS INTERNOS RELACIONADOS COM AS SAÍDAS DIGITAIS				
01FF 0180	ÁREA RESERVADA PARA MAPEAMENTO DAS SAÍDAS DIGITAIS			

Importante: Os estados internos não utilizados poderão ser usados como estados internos auxiliares.

Multiplex

O módulo **4004.70** oferece os drivers para ligar externamente os 32 botões e/ou 32 LED's. Estes Botões e/ou LED's são relacionados aos estados internos através do aplicativo WinSUP 2.

Importante: - máximo de 1 módulo por bastidor.

A seguir é mostrado o esquema de ligação dos Botões e LED's:

Fig. 47.- Esquema de Ligação externa de Botões e LED's para 4004.70

Endereçamento das Expansões Digitais

A série **MPC4004**, permite ao usuário definir até 7 expansões digitais, além dos pontos digitais presentes no Módulo de Processamento.

O jumper **ST1** é definido como sendo de posições de **A** até **H**, sendo que a posição **A** é reservada para o endereçamento dos pontos digitais presentes no módulo de processamento.

A primeira expansão declarada receberá a posição **B**, a segunda posição **C**, e assim sucessivamente até estarem completas as 7 expansões possíveis.

As posições dos jumpers de endereçamento (**ST1**) e de grupo (**STG***) são fornecidas pelo aplicativo WinSUP 2, durante a configuração do hardware a ser utilizado.

JUMPER	POSIÇÃO	FUNÇÃO
010*	A	PRIMEIRO GRUPO DE EXPANSÕES (1ª. a 7ª. EXPANSÃO)
SIG	В	SEGUNDO GRUPO DE EXPANSÕES (8ª. a 15ª. EXPANSÃO)

JUMPER	POSIÇÃO	FUNÇÃO
	A	INVÁLIDO PARA O GRUPO 1 E 8ª. EXPANSÃO DO GRUPO 2
	В	1 ^a . EXPANSÃO DO GRUPO 1 OU 9 ^a . EXPANSÃO DO GRUPO 2
	С	2 ^ª . EXPANSÃO DO GRUPO 1 OU 10 ^ª . EXPANSÃO DO GRUPO 2
674	D	3 ^ª . EXPANSÃO DO GRUPO 1 OU 11 ^ª . EXPANSÃO DO GRUPO 2
511	E	4 ^ª . EXPANSÃO DO GRUPO 1 OU 12 ^ª . EXPANSÃO DO GRUPO 2
	F	5 ^ª . EXPANSÃO DO GRUPO 1 OU 13 ^ª . EXPANSÃO DO GRUPO 2
	G	6 ^a . EXPANSÃO DO GRUPO 1 OU 14 ^a . EXPANSÃO DO GRUPO 2
	Н	7 ^a . EXPANSÃO DO GRUPO 1 OU 15 ^a . EXPANSÃO DO GRUPO 2

Importante: * Quando o módulo de expansão **não possuir** o jumper de grupo **STG**, **somente** o jumper **ST1** deverá ser configurado (para maiores detalhes ver página 35).

Para estes drivers o jumper STG deverá sempre estar na posição A.

Utilizando o Aplicativo WinSUP 2

Para inserir uma placa digital, siga os seguintes passos:

- 1. Na guia "Expansões" da Configuração de Hardware, clique no botão Configurar;
- 2. Na Árvore de Expansões, abra a opção "Módulos Digitais";
- 3. Dentre as opções disponíveis, escolha a placa que deseja inserir;
- 4. Para inseri-la em uma posição livre do bastidor, existem 3 maneiras:
 - 1.1- Selecione, na Tabela de Expansões, a linha correspondente ao slot que deseja preencher;
 - **1.2-** Dê um duplo-clique sobre o módulo digital selecionado na Árvore de Expansões;

2.1- Clique e arraste o módulo digital selecionado na *Árvore de Expansões,* para a linha correspondente ao slot que deseja preencher, na *Tabela de Expansões;*

3.1- Clique e arraste o módulo digital selecionado na *Árvore de Expansões,* para o slot desejado no *Bastidor*;

Capítulo 4 – Características dos Drivers MPC4004, MPC4004G e MPC4004L

🏭 Expansões de hardware											<u>- 0 ×</u>
Expansões de hardware Expansões de hardware 02 slots 04 slots 06 slots 08 slots 10 slots 10 slots 16 entradas digitais 16 saídas digitais 8 entradas digitais 8 saídas digitais 9 saída		1.1 , PU 1 1.A S ⁻	A2 IGE T1-B	A3 16E 16S ST1-C	A4 8S ST1-D	A5 32E ST1-E	A6 Font	0			
		Descri	ção					Jumper		Mapeam	ento
		CPU g	enério	ca com 8	E/8S			ST1-A		E: 0100	S: 0180
Hodulos de l'emperadura	A2	Módule	o de e	expansão	com 1	6E genéi	rico	ST1-B		E: 0110	
H Módulos de contagem rápida	A3	Móduk	o de e	xpansão	com 1	6E716S g	genér	ST1-C		E: 0120	S: 0190
	A4	Móduk	o de e	expansão	com 8	6 genério	со	ST1-D		E: 0130	S: 01A0
	A5	Móduk	o de e	xpansão	com 3	2E genéi	rico	ST1-E		E: 0140	
	A6	Fonte	de alir	mentaçã	o genér	ica					
Módulo de expansão com 32E genérico							<u>0</u> K		<u>C</u> ancela		Ajuda

Fig. 48. - Inserindo módulo digital

Para acessar as configurações da placa Multiplex, utilize um dos procedimentos mostrados abaixo:

- No Bastidor dê um duplo-clique sobre a imagem da placa Multiplex;
- Na Tabela de Expansões dê um duplo-clique sobre a linha correspondente à placa Multiplex;
- Clique com o botão direito no mouse sobre o Bastidor ou a Tabela de Expansões (na placa Multiplex) e selecione a opção "Propriedades";

Na janela "Configuração do Multiplex", defina o número de botões e LED's da placa e seus respectivos El's iniciais. Clique em "**OK**" para confirmar a configuração.

Módulos Analógicos

Módulos Analógicos (Mistos)

As expansões analógicas convertem até 16 sinais de entrada e 16 sinais de saída analógicos.

Mapeamento de Memória

Entradas Analógicas:

ESTADOS INTERNOS RELACIONADOS					
005F 0040	32 ESTADOS INTERNOS DE COMPARAÇÃO ENTRE OS PRESETS	(1)			

REGISTROS ASSOCIADOS					
05FF 05F0	8 EFETIVOS DE ENTRADAS ANALÓGICAS	Canais 1 a 8			
05EF 05E0	8 EFETIVOS "ORIGINAIS" QUANDO A INSTRUÇÃO FATOR É UTILIZADA	Canais 1 a 8			
05DF 05D0	8 EFETIVOS DE ENTRADAS ANALÓGICAS	Canais 9 a 16			
058F 0550	32 PRESETS DE COMPARAÇÃO AUTOMÁTICA DE REGIS	TROS			

Saídas Analógicas:

ESTADOS INTERNOS RELACIONADOS				
017F 0160	32 ESTADOS INTERNOS RELACIONADOS AOS PRESETS DE SAÍDA (1)			

REGISTROS ASSOCIADOS						
06EF 06E0	8 EFETIVOS DE SAÍDAS ANALÓGICAS Canais 1 a 8					
06DF 06D0	8 EFETIVOS DE SAÍDAS ANALÓGICAS Canais 9 a 16					
068F 0650 32 PRESETS DA MOVIMENTAÇÃO DE DADOS ATRAVÉS DE EI						
(1) Caso o usuário necessite de mais de 32 prestes, a região de estado interno deverá ser realocada para						

(1) Caso o usuário necessite de mais de 32 prestes, a região de estado interno deverá ser realocada para que não haja conflito com os estados reservados para temperatura ou saídas digitais.

Endereçamento das Expansões Analógicas

A série MPC4004, permite ao usuário definir até 04 Módulos de Entradas/Saídas Analógicas. A posição do jumper de endereçamento (**ST2**) é fornecida pelo aplicativo WinSUP 2, durante a configuração do hardware a ser utilizado.

JUMPER	POSIÇÃO	FUNÇÃO
	А	1ª. EXPANSÃO ANALÓGICA
672	В	2 ^ª . EXPANSÃO ANALÓGICA
512	С	3 ^ª . EXPANSÃO ANALÓGICA
	D	4 ^ª . EXPANSÃO ANALÓGICA

Módulo Analógico Compacto (MAC)

As expansões analógicas convertem até 32 sinais de Entrada ou 32 sinais de Saída analógicos.

Mapeamento de Memória

Entradas e Saídas Analógicas:

REGISTROS ASSOCIADOS			
087F 0840	32 EFETIVOS DE SAÍDAS ANALÓGICAS COMPACTAS		
083F 0800	32 EFETIVOS DE ENTRADAS ANALÓGICAS COMPACTAS		

Importante: Os módulos **MAC** só entram em operação quando o programa é gravado na memória **FLASH**, portanto não é permitido usar os módulos **MAC** com o **Boot** desabilitado.

Endereçamento das Entradas e Saídas Analógicas Compactas (MAC)

A série MPC4004, permite ao usuário definir até 04 Módulos de Analógicas Compactas.

As posições dos jumpers de endereçamento (**ST1**) e de grupo (**STG***) são fornecidas pelo aplicativo WinSUP 2, durante a configuração do hardware a ser utilizado.

JUMPER	POSIÇÃO	FUNÇÃO
STG *	A	SEGUNDO GRUPO DE EXPANSÕES (8ª. a 15ª. EXPANSÃO)
	В	PRIMEIRO GRUPO DE EXPANSÕES (1ª. a 7ª. EXPANSÃO)

JUMPER	POSIÇÃO	FUNÇÃO	
	A	1ª. EXPANSÃO ANALÓGICA	
ST1	В	2 ^ª . EXPANSÃO ANALÓGICA	
	С	3 ^ª . EXPANSÃO ANALÓGICA	
	D	4 ^ª . EXPANSÃO ANALÓGICA	

Importante: * Quando o módulo de expansão **não possuir** o jumper de grupo **STG**, **somente** o jumper **ST1** deverá ser configurado (para maiores detalhes ver página 35).

Para estes drivers o jumper STG deverá sempre estar na posição B.

Utilizando o Aplicativo WinSUP 2

Para inserir uma placa analógica, siga os seguintes passos:

- 1. Na guia "Expansões" da Configuração de Hardware, clique no botão Configurar;
- 2. Na Árvore de Expansões, abra a opção "Módulos Analógicos";
- 3. Dentre as opções disponíveis, escolha a placa que deseja inserir;
- **4.** Para inseri-la em uma posição livre do bastidor, existem 3 maneiras:
 - **1.1** Selecione, na *Tabela de Expansões,* a linha correspondente ao slot que deseja preencher;
 - 1.2- Dê um duplo-clique sobre o módulo analógico selecionado na Árvore de Expansões;

2.1- Clique e arraste o módulo analógico selecionado na *Árvore de Expansões,* para a linha correspondente ao slot que deseja preencher, na *Tabela de Expansões;*

3.1- Clique e arraste o módulo analógico selecionado na *Árvore de Expansões,* para o slot desejado no *Bastidor*;

Para acessar as configurações de uma placa analógica, utilize um dos procedimentos mostrados abaixo:

- No *Bastidor* dê um duplo-clique sobre a imagem da placa analógica que se deseja configurar;
- Na *Tabela de Expansões* dê um duplo-clique sobre a linha correspondente à placa analógica que se deseja configurar;
- Clique com o botão direito no mouse sobre o *Bastidor* ou a *Tabela de Expansões* (na placa que se deseja configurar) e selecione a opção "*Propriedades*";

A configuração das expansões do WinSUP 2 é feita em formato de tabela, abaixo segue o procedimento para configurar cada opção disponível.

Habilitando um canal analógico:

Na coluna "*Habilitação*" dê um clique sobre a célula correspondente ao canal que se deseja habilitar; **Observação:** Os canais analógicos são habilitados sempre em "pares", isto é, de 2 em 2 canais.

Definindo o tipo de valor a ser utilizado:

1. Na coluna "*Tipo*" dê um clique sobre a célula correspondente ao canal que se deseja utilizar;

2. Uma caixa de seleção se abrirá. Escolha uma das duas opções disponíveis (BCD para decimal e BIN para hexadecimal);

Observação: Cada canal pode possuir um tipo de valor diferente.

Definindo a escala a ser utilizada:

- 1. Na coluna "Escala" dê um clique sobre a célula correspondente ao canal que se deseja utilizar;
- 2. Uma caixa de seleção se abrirá. Escolha uma das opções disponíveis para escala;

É possível determinar o fundo de escala mais adequado à aplicação, escolhendo a escala a ser aplicada, segundo as tabelas mostradas a seguir:

Entrada Analógica:			
Escala (BCD)	Escala (Binário)		
0000 - 0500	0000 - 01F4		
0000 - 0700	0000 - 02BC		
0000 - 1000	0000 - 03E8		
0000 - 2000	0000 - 07D0		
0000 - 4000	0000 - 0FA0		
0000 - 5000	0000 - 1388		
0000 - 7000	0000 - 1B58		
0000 - 9999	0000 - 270F		

Saída Analógica:

Escala (BCD)	Escala (Binário)
0000 - 9999	0000 - 270F
0000 - 5000	0000 - 1388
0000 - 4000	0000 - 0FA0
0000 - 2000	0000 - 07D0
0000 - 1000	0000 - 03E8

Observação: Cada canal possui sua própria escala. Default: 0000 - 4000.

Definindo os El's das placas analógicas bipolares (somente 4004.60N e 4004.61N):

Abaixo da tabela de configuração encontra-se um campo chamado "*Primeiro El sinal +/- 10Vcc*". Defina nele o primeiro estado interno de indicação de sinal. Ele será utilizado pelo primeiro canal de saída da placa. Todos os outros canais utilizam os El's na seqüência.

Esse El determina se o valor colocado nos respectivos registros de cada saída corresponderá a uma tensão entre 0 a +10Vcc (se o El de sinal estiver OFF), ou uma tensão entre 0 e -10Vcc (se o El de sinal estiver ON);

Exemplo de utilização do El de sinal:

Escala	40	00		00	00		40	00
			EI = ON			EI = OFF		
Tensão	-10\	/cc		0V	cc		+10\	/cc

• Módulos de Temperatura

Os módulos que fazem a leitura de temperatura convertem e linearizam tensões provenientes de até 16 termopares tipo J, tipo K ou termoresistência do tipo PT100.

<u>Importante</u>: Para utilizar os módulos de temperatura tipo "K", a memória básica utilizada na CPU do controlador MPC4004, deverá ser a **4004KVx** (onde x = última versão)

Mapeamento de Memória

Canais de Temperatura:

REGISTROS ASSOCIADOS			
06FF 06F0	8 VALORES EFETIVOS DE TEMPERATURA	Canais 1 a 8	
06CF 06C0	8 VALORES EFETIVOS DE TEMPERATURA	Canais 9 a 16	

Importante: Os canais 1 a 8 possuem controle PID de temperatura automático (através do WinSUP 2), assim o usuário poderá *configurar* os parâmetros PID.

Já os canais 9 a 16 são de apenas leitura, não possuindo controle PID de temperatura automático. Caso queira ter o controle, utilizar a **Instrução PID** (Ver manual DWARE), ou seja, deve-se programar os parâmetros PID.

Ao configurar a segunda placa (canais 9 a 16) do Módulo de Temperatura (**4004.65/X** ou **4004.66/X**) *não é permitida* a utilização simultânea com o Módulo de Contagem Rápida (**4004.87** ou **4004.87** A).

Parâmetros PID:

Podem-se também criar telas de edição para os parâmetros PID, utilizando o mapeamento mostrado a seguir (difere entre os drivers MPC4004 e MPC4004G):

PARÂMETROS PID				
MPC4004	MPC4004G	DESCRIÇÃO		
7B0F 7B0E	FB0F FB0E	ТЕМРО	(02 a 25 segundos)	
7B0D 7B0C	FB0D FB0C	Kd	(00,0 a 25,5 minutos)	
7B0B 7B0A	FB0B FB0A	Кі	(004 a 250 repetições/minuto)	
7B09 7B08	FB09 FB08	Кр	(000 a 100%)	
7B07 7B06	FB07 FB06	BANDA	(0 a 25 °C)	
7B05 7B04	FB05 FB04	PRESET	(Endereço onde está o Preset)	
7B03 7B02	FB03 FB02	ALARME MÁXIMO	(Endereço onde está o Alarme)	
7B01 7B00	FB01 FB00	ALARME MÍNIMO	(Endereço onde está o Alarme)	

SOFT-STA	SOFT-START – Ks				
MPC4004	MPC4004G	DESCRIÇÃO	ZONA 8		
7B8F 7B8E	FB8F FB8E	PORCENTAGEM DE SOFT-START (0-100%)			
•	•	•			
-	•	•			
7B81 7B80	FB81 FB80	PORCENTAGEM DE SOFT-START (0-100%)	ZONA 01		

MAPEAMENTO GERAL PARA AS ZONAS DE TEMPERATURA

MPC4004	MPC4004G	DESCRIÇÃO
7B7F 7B70	FB7F FB70	PARÂMETROS ZONA 8
7B6F 7B60	FB6F FB60	PARÂMETROS ZONA 7
7B5F 7B50	FB5F FB50	PARÂMETROS ZONA 6
7B4F 7B40	FB4F FB40	PARÂMETROS ZONA 5
7B3F 7B30	FB3F FB30	PARÂMETROS ZONA 4
7B2F 7B20	FB2F FB20	PARÂMETROS ZONA 3
7B1F 7B10	FB1F FB10	PARÂMETROS ZONA 2
7B0F 7B00	FB0F FB00	PARÂMETROS ZONA 1

Estados Internos Relacionados ao Controle de Temperatura:

CANAIS 1 a 8		
009F 0098	EI'S HABILITA CONTROLE APÓS RUPTURA	(1)
0097 0090	EI'S HABILITA CONTROLE DE OVER-SHOOT	
008F 0088	EI'S ALARME TERMOPAR ABERTO	(1)
0087 0080	EI'S ALARME TERMOPAR INVERTIDO	(1)
007F 0078	EI'S ALARME DE MÁXIMO	
0077 0070	EI'S ALARME DE MÍNIMO	
006F 0068	HABILITA CONTROLE DE SOFT-START	(1)
0067 0060	EI'S DE AQUECIMENTO	

CANAIS 9 a 16			
01FF 01F8	EI'S ALARME TERMOPAR ABERTO	(1)	
01F7 01F0	EI'S ALARME TERMOPAR INVERTIDO	(1)	

(1) somente para o termopar tipo J e tipo K

Módulo 4004.85 (PT100 a 3 fios)

O módulo **4004.85** possui:

04 canais de entradas analógicas (0 a 10Vcc ou 0 a 20 mA) 04 canais de leitura para termoresistência do tipo PT100 (0 a 200 °C)

Os canais de temperatura são de apenas leitura, não possuindo controle PID de temperatura .

Mapeamento de Memória das Entradas Analógicas:

REGISTROS ASSOCIADOS		
07FF 07F8	04 EFETIVOS DAS ENTRADAS DE 0 – 10 V	
07F7 07F0	04 EFETIVOS DAS ENTRADAS DO PT100	

Endereçamento das Expansões de Temperatura

JUMPER	POSIÇÃO	FUNÇÃO
ST2	E ^(*)	Canais 1 a 8
	Н	Canais 9 a 16

^(*) Posição Default

Observação: Máximo de 2 módulos de temperatura por bastidor

Importante: Para o módulo 4004.85, é permitido somente **uma** placa por bastidor, tendo sua posição de endereçamento fixa em **ST2- F**.

Utilizando o Aplicativo WinSUP 2

Para inserir uma placa de temperatura, siga os seguintes passos:

- 1. Na guia "Expansões" da Configuração de Hardware, clique no botão Configurar;
- 2. Na Árvore de Expansões, abra a opção "Módulos de Temperatura";
- 3. Dentre as opções disponíveis, escolha a placa que deseja inserir;
- 4. Para inseri-la em uma posição livre do bastidor, existem 3 maneiras:

1.1- Selecione, na *Tabela de Expansões,* a linha correspondente ao slot que deseja preencher;
1.2- Dê um duplo-clique sobre o módulo de temperatura selecionado na *Árvore de Expansões*;

2.1- Clique e arraste o módulo de temperatura selecionado na Árvore de Expansões, para a

linha

correspondente ao slot que se deseja preencher, na *Tabela de Expansões;*

3.1- Clique e arraste o módulo de temperatura selecionado na *Árvore de Expansões,* para o slot desejado no *Bastidor*;

Para acessar as configurações de uma placa de temperatura, utilize um dos procedimentos mostrados abaixo:

No Bastidor dê um duplo-clique sobre a imagem da placa de temperatura que se deseja configurar;

Na *Tabela de Expansões* dê um duplo-clique sobre a linha correspondente à placa de temperatura que se deseja configurar;

Clique com o botão direito do mouse sobre o *Bastidor* ou a *Tabela de Expansões* (na placa que se deseja configurar) e selecione a opção "*Propriedades*";

Contadores Rápidos

Os módulos de expansão de contagem rápida **4004.87** e **4004.87SA** destinam-se para medições de posicionamentos possibilitando a contagem de **-8.388.608** a **+8.388.608** pulsos à freqüência máxima de 100 kHz.

Importante: É permitida somente uma placa de contagem rápida por bastidor.

Estes módulos possuem dois canais independentes que devem receber como sinal de entrada transdutores de posição incrementais, lineares ou angulares, com sinais de onda quadrada defasados de 90° (A, B e seus complementares) para detecção de sentido e um sinal de referência (Z e seu complementar). Opcionalmente o sinal B (e seu complementar) pode ser eliminado para uso onde não há necessidade de detecção de sentido.

<u>Observação:</u> Os dispositivos com sinais A e A ,B e B , Z e Z , também recebem o nome de sinais "driver de linha"

Possuem também uma saída física para cada canal configurável para tipo "P" ou "N" (ver pág. 34). Esta saída mantém o status de comparação entre o setpoint de contagem e o valor efetivo, sendo possível configurar se a mesma irá acionar quando o efetivo for maior que o setpoint ou o contrário (ver estados 00E4 e 00EC).

Também possui uma entrada de bloqueio de contagem para cada canal, configurável para tipo "P" ou "N" (ver pág. 34)

Os módulos possuem contagem bidirecional (contagem de pulsos em ambos os sentidos), com os seguintes recursos :

- Zerar a contagem através de estado interno de RESET (independente do sinal de referência), impede que o contador seja zerado pelo pulso de zero através do estado interno DESABILITA ZERO EXTERNO.
- Carregar um valor inicial para contagem através de estado interno de LOAD VALOR INICIAL.
- Bloquear a contagem através de estado interno de BLOQUEIO.
- Habilitar a saída física de comparação através de estado interno HABILITA SAÍDA.

Todos estes estados internos mencionados são individuais por canal e ativados no programa de usuário.

Para estes módulos existem ainda os estados internos de comparação ($\geq e <$) entre um valor de setpoint e o valor efetivo do contador, além do estado interno relativo ao sinal de referência do transdutor de posição (zero elétrico).

Todos estes estados internos são de leitura para o programa de usuário e também individuais por canal.

A cada pulso amostrado um registro de contagem é incrementado ou decrementado e uma comparação é executada com um valor de setpoint pré-definido pelo usuário. O resultado da comparação é deixado em disponibilidade através de estados internos específicos que podem ser usados no programa de usuário. Se fisicamente houver o sinal de referência, na borda de ocorrência haverá a zeragem incondicional do registro de contagem (se o estado interno de DESABILITA ZERO EXTERNO não estiver habilitado) e também será sinalizado através de um estado interno específico. O resultado da comparação também é colocado em uma saída física programável pelo usuário (\geq , <) efetivo maior/igual setpoint ou efetivo menor que setpoint. Esta programação é feita através do estado interno "HABILITA SAÍDA EFETIVO \geq SETPOINT".

O módulo de expansão de contagem rápida **4004.87SA** possui além de todas as características descritas acima, uma saída analógica por canal de contagem. A saída varia de -10 Vcc a +10 Vcc.

O valor da saída será dado pelo setpoint colocado nos registros de saída analógica associada ao Contador Rápido 1 (04EC/04ED) e Contador Rápido 2 (04FC/04FD), este valor varia entre 0 e 2000, sendo que o estado interno de SINAL DA SAÍDA ANALÓGICA (03FA para Contador 1 e 03FB para Contador 2) definirá se o valor é positivo ou negativo.

Importante: Ao configurar o Módulo de Contagem Rápida (**4004.87** ou **4004.87SA**) *não é permitida* a utilização simultânea com a segunda placa (canais 9 a 16) dos Módulos de Temperatura (**4004.65** ou **4004.66**).

Mapeamento de Memória

ESTADOS	INTERNOS RELACIONADOS		
03FD	EI DE SENTIDO DO CONTADOR RÁPIDO 2	(2)	
03FC	EI DE SENTIDO DO CONTADOR RÁPIDO 1	(2)	
03FB	EI DE SINAL DA SAÍDA ANALÓGICA DO CONTADOR RÁPIDO 2	(1)	
03FA	EI DE SINAL DA SAÍDA ANALÓGICA DO CONTADOR RÁPIDO 1	(1)	
00EF	POSIÇÃO ZERO CONTADOR RÁPIDO 2		(2)
00EE	EFETIVO < SETPOINT CONTADOR RÁPIDO 2		(2)
00ED	EFETIVO ≥ SETPOINT CONTADOR RÁPIDO 2		(2)
00EC	LIGA SAÍDA QUANDO EFETIVO ≥ SETPOINT CONTADOR RÁPIDO 2	(1)	
00EB	HABILITA SAÍDAS CONTADOR RÁPIDO 2	(1)	
00EA	BLOQUEIO DE CONTAGEM DO CONTADOR RÁPIDO 2	(1)	
00E9	LOAD SETPOINT INICIAL CONTADOR RÁPIDO 2	(1)	
00E8	RESET EFETIVO CONTADOR RÁPIDO 2	(1)	
00E7	POSIÇÃO ZERO CONTADOR RÁPIDO 1		(2)
00E6	EFETIVO < SETPOINT CONTADOR RÁPIDO 1		(2)
00E5	EFETIVO ≥ SETPOINT CONTADOR RÁPIDO 1		(2)
00E4	LIGA SAÍDA QUANDO EFETIVO ≥ SETPOINT CONTADOR RÁPIDO 1	(1)	
00E3	HABILITA SAÍDAS CONTADOR RÁPIDO 1	(1)	
00E2	BLOQUEIO DE CONTAGEM DO CONTADOR RÁPIDO 1	(1)	
00E1	LOAD SETPOINT INICIAL CONTADOR RÁPIDO 1	(1)	
00E0	RESET EFETIVO CONTADOR RÁPIDO 1	(1)	
00AF	DESABILITA ZERO EXTERNO CONTADOR RÁPIDO 2	(1)	
00AE	DESABILITA ZERO EXTERNO CONTADOR RÁPIDO 1	(1)	

(1) Estados escritos como saída no software de usuário, para uso no software básico.

(2) Estados de leitura apenas pelo software usuário.

REGISTROS A	REGISTROS ASSOCIADOS			
04FF 04FE	RESERVADO			
04FD 04FC	SAÍDA ANALÓGICA ASSOCIADA CONTADOR RÁPIDO 2			
04FB 04F8	VALOR INICIAL CONTADOR RÁPIDO 2			
04F7 04F4	EFETIVO CONTADOR RÁPIDO 2			
04F3 04F0	PRESET CONTADOR RÁPIDO 2			
04EF 04EE	RESERVADO			
04ED 04EC	SAÍDA ANALÓGICA ASSOCIADA CONTADOR RÁPIDO 1			
04EB 04E8	VALOR INICIAL CONTADOR RÁPIDO 1			
04E7 04E4	EFETIVO CONTADOR RÁPIDO 1			
04E3 04E0	PRESET CONTADOR RÁPIDO 1			

Utilizando o Aplicativo WinSUP 2

Para inserir uma placa de contagem rápida, siga os seguintes passos:

1. Na guia "Expansões" da Configuração de Hardware, clique no botão Configurar;

2. Na Árvore de Expansões, abra a opção "Módulos Dedicados";

3. Dentre as opções disponíveis, escolha a placa que deseja inserir;

4. Para inseri-la em uma posição livre do bastidor, existem 3 maneiras:

1.1- Selecione, na *Tabela de Expansões,* a linha correspondente ao slot que deseja preencher;

1.2- Dê um duplo-clique sobre o módulo de contagem rápida selecionado na Árvore de Expansões;

2.1- Clique e arraste o módulo de contagem rápida selecionado na *Árvore de Expansões,* para a linha correspondente ao slot que se deseja preencher, na *Tabela de Expansões;*

3.1- Clique e arraste o módulo de contagem rápida selecionado na *Árvore de Expansões,* para o slot desejado no *Bastidor*;

Para acessar as configurações de uma placa de contagem rápida, utilize um dos procedimentos mostrados abaixo:

No *Bastidor* dê um duplo-clique sobre a imagem da placa de contagem rápida que se deseja configurar;

Na *Tabela de Expansões* dê um duplo-clique sobre a linha correspondente à placa de contagem rápida que se deseja configurar;

Clique com o botão direito do mouse sobre o *Bastidor* ou a *Tabela de Expansões* (na placa que se deseja configurar) e selecione a opção "*Propriedades*";

Habilitando os contadores:

Para habilitar os dois contadores disponíveis na placa, marque as opções "*Habilita contador 1*" e "*Habilita contador 2*". Cada contador funciona individualmente, ou seja, se somente o contador 1 for utilizado, não é necessário marcar a opção "Habilita contador 2".

Os efetivos dos contadores rápidos 1 e 2 encontram-se nas posições de memória 4E4 e 4F4 respectivamente, como mostra a janela de configuração.

Habilitando as saídas analógicas:

Para habilitar as saídas analógicas presentes no módulo de contagem rápida, marque a opção "*Habilita saídas analógicas*". Esta opção está presente somente no módulo 4004.87SA.

Os efetivos das saídas analógicas 1 e 2 encontram-se nas posições de memória 4EC e 4FC respectivamente, como mostra a janela de configuração.

Habilitando contagem binária:

Para utilizar os contadores rápidos em modo binário, marque a opção "Contadores em binário".

• Módulo de Energia

<u>ATENÇÃO:</u> Este módulo deverá ser utilizado somente com as unidades de processamento "XA".

A unidade **4004.45** foi idealizada para atender aplicações direcionadas ao controle e análise de parâmetros elétricos trifásicos.

Integrado a série MPC4004 sobre a forma de um módulo microprocessado, o novo módulo possibilita aplicações dedicadas ao controle de energia ou aplicações integradas, que também requeiram a monitoração de parâmetros elétricos.

Principais Características:

- * Medição de parâmetros elétricos (para sistemas em Y com neutro):
- * Tensão RMS (valor trifásico e por fase);
- * Corrente RMS (valor trifásico e por fase);
- * Potência Ativa (valor trifásico e por fase);
- * Potência Reativa (valor trifásico e por fase);
- Potência Aparente (valor trifásico e por fase);
- * Fator de Potência (valor trifásico e por fase);
- * Consumo de Energia Reativa (valor trifásico e por fase);
- * Freqüência (por fase);
- * Detecção de falta de Fase;
- * Detecção de inversão de Fase;
- * Detecção do sentido da Energia.

Fórmulas Relacionadas as Medições:

- S Potência aparente ou potência total VA
- P Potência ativa W
- Q Potência reativa VAr
- I Corrente A

 $\text{COS}\phi$ - fator de potência

Mapeamento de Memória

O módulo de energia 4004.45 utiliza 16 estados internos e 96 registros para trocar informações. Para facilitar a localização dos registros, comece sempre no início de uma página. Visando facilitar o entendimento da programação dos módulos, será mostrado o mapeamento tendo como referências os seguintes ponteiros:

Primeiro Registro – 0600h (poderia ser 0800h, 1000, 2000, etc.)

Primeiro estado interno - 0200h (poderia ser 0250h, 0320, etc.)

Exemplo de mapeamento do módulo 4004.45:

ENDERECO	DESCRIÇÃO	REDRESENTAÇÃO	DIREÇÃO
LINDEREÇÜ	DESCRIÇÃO	REPRESENTAÇÃO	CPU ⇔ 4004.45
06BE	RESERVADO		
06BC	KPT3 CTE MULTIP. PARA POTÊNCIA TOTAL FASE 3	X.XXX	\Rightarrow
06BA	KPT2 CTE MULTIP. PARA POTÊNCIA TOTAL FASE 2	X.XXX	\Rightarrow
06B8	KPT1 CTE MULTIP. PARA POTÊNCIA TOTAL FASE 1	X.XXX	\Rightarrow
06B6	KPR3 CTE MULTIP. PARA POTÊNCIA REATIVA FASE 3	X.XXX	\Rightarrow
06B4	KPR2 CTE MULTIP. PARA POTÊNCIA REATIVA FASE 2	X.XXX	\Rightarrow
06B2	KPR1 CTE MULTIP. PARA POTÊNCIA REATIVA FASE 1	X.XXX	\Rightarrow
06B0	KPA3 CTE MULTIP. PARA POTENCIA ATIVA FASE 3	X.XXX	\Rightarrow
06AE	KPA2 CTE MULTIP. PARA POTENCIA ATIVA FASE 2	X.XXX	\Rightarrow
06AC	KPA1 CTE MULTIP. PARA POTENCIA ATIVA FASE 1	X.XXX	\Rightarrow
06AA	KI3 CTE MULTIP. PARA CORRENTE FASE 3	XX.XX	\Rightarrow
06A8	KI2 CTE MULTIP. PARA CORRENTE FASE 2	XX.XX	\Rightarrow
06A6	KI1 CTE MULTIP. PARA CORRENTE FASE 1	XX.XX	\Rightarrow
06A4	KV3 CTE MULTIP. PARA TENSÃO FASE 3	X.XXX	\Rightarrow
06A2	KV2 CTE MULTIP. PARA TENSÃO FASE 2	X.XXX	\Rightarrow
06A0	KV1 CTE MULTIP. PARA TENSÃO FASE 1	X.XXX	\Rightarrow
069E	RESERVADO		
069C	POTÊNCIA TOTAL FASE 3 * KPT3 FASE 3	XXXX	\Leftarrow
069A	POTÊNCIA TOTAL FASE 2 * KPT3 FASE 2	XXXX	⇐
0698	POTÊNCIA TOTAL FASE 1 * KPT3 FASE 1	XXXX	⇐
0696	POTÊNCIA REATIVA FASE 3 * KPR3 FASE 3	XXXX	⇐
0694	POTÊNCIA REATIVA FASE 2 * KPR2 FASE 2	XXXX	⇐
0692	POTÊNCIA REATIVA FASE 1 * KPR1 FASE 1	XXXX	⇐
0690	POTÊNCIA ATIVA FASE 3 * KPA3 FASE 3	XXXX	⇐
068E	POTÊNCIA ATIVA FASE 2 * KPA2 FASE 2	XXXX	⇐
068C	POTÊNCIA ATIVA FASE 1 * KPA1 FASE 1	XXXX	⇐
068A	CORRENTE FASE 3 * KI3 FASE 3	XX.XX	⇐
0688	CORRENTE FASE 2 * KI2 FASE 2	XX.XX	⇐
0686	CORRENTE FASE 1 * KI1 FASE 1	XX.XX	⇐
0684	TENSÃO FASE 3 * KV3 FASE 3	XXX.X	⇒
0682	TENSÃO FASE 2 * KV2 FASE 2	XXX.X	⇒
0680	TENSÃO FASE 1 * KV1 FASE 1	XXX.X	⇒
067F-067E	MÊDIA DAS CORRENTES	XX.XX	⇐
067C	MÉDIA FATOR DE POTÊNCIA	XX.XX	⇐
0678-067B		XXXXXXXX	⇒
0674-0677	POTENCIA REATIVA TOTAL	XXXXXXXX	⇐
0670-0673	POTENCIA ATIVA TOTAL	XXXXXXXX	⇐
0668-066F	ENERGIA TOTAL REATIVA FASES 3,2,1 KWH	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	⇒
0660-0667	ENERGIA TOTAL ATIVA FASES 3,2,1 KWH	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	⇒
0658-065F	ENERGIA REATIVA FASES 3 KWH	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	⇒
0650-0657	ENERGIA REATIVA FASES 2 KWH	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	⇒
0648-064F	ENERGIA REATIVA FASES 1 KWH	XXXXXXXXXXX.XXXXXX	\Leftarrow

Capítulo 4 – Características dos Drivers MPC4004, MPC4004G e MPC4004L

	DECODIÇÃO		REPRESENTAÇÃO	D	DIREÇ	ÃO
ENDEREÇO	DESCRIÇÃO			CPU	⇔	4004.45
0640-0647	ENERGIA ATIVA FASES 3	KWH	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		\Leftarrow	
0638-063F	ENERGIA ATIVA FASES 2	KWH	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		\Downarrow	
0630-0637	ENERGIA ATIVA FASES 1	KWH	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		\Downarrow	
062C	$COS \phi$ FASE 3		XX.XX		\Rightarrow	
062A	POTÊNCIA APARENTE FASE 3		XXXX		\Rightarrow	
0628	POTÊNCIA REATIVA FASE 3		XXXX		\Rightarrow	
0626	POTÊNCIA ATIVA FASE 3		XXXX		\Rightarrow	
0624	CORRENTE FASE 3		XX.XX		\Rightarrow	
0622	FREQUENCIA FASE 3		XX.XX		\Rightarrow	
0620	TENSÃO FASE 3		XXX.X		\Rightarrow	
061C	$COS \phi$ FASE 2		XX.XX		\Rightarrow	
061A	POTÊNCIA APARENTE FASE 2		XXXX		\Downarrow	
0618	POTÊNCIA REATIVA FASE 2		XXXX		\Rightarrow	
0616	POTÊNCIA ATIVA FASE 2		XXXX		\Rightarrow	
0614	CORRENTE FASE 2		XX.XX		\Rightarrow	
0612	FREQUENCIA FASE 2		XX.XX		\Rightarrow	
0610	TENSÃO FASE 2		XXX.X		\Rightarrow	
060C	$COS \phi$ FASE 1		XX.XX		\Rightarrow	
060A	POTÊNCIA APARENTE FASE 1		XXXX		\Rightarrow	
0608	POTÊNCIA REATIVA FASE 1		XXXX		\Rightarrow	
0606	POTÊNCIA ATIVA FASE 1		XXXX		⇒	
0604	CORRENTE FASE 1		XX.XX		⇒	
0602	FREQUENCIA FASE 1		XX.XX		⇒	
0600	TENSÃO FASE 1		XXX.X		\Leftarrow	

Estados Internos

	DESCRIÇÃO		DIREÇÃO		
ENDEREÇÜ	BESCRIÇÃO				
020F	RESERVADO				
020E	ON- LIBERA CÁLCULO DE POTÊNCIAS, CORRENTES E FATOR DE POTÊNCIA			⇒	
020D	ON – LIBERA CÁLCULO DE ENERGIA			⇒	
020C	ON – ZERA CALCULO DE ENERGIA			⇒	
020B	RESERVADO				
020A	RESERVADO				
0209	RESERVADO				
0208	RESERVADO				
0207	ON – FALTA DE FASES			\Leftrightarrow	
0206	ON – SEQUENCIA DE FASES ERRADAS			\Rightarrow	
0205	ON – POTÊNCIA REATIVA FASE 3 POSITIVA			\Leftarrow	
0204	ON – POTÊNCIA REATIVA FASE 2 POSITIVA			\Leftrightarrow	
0203	ON – POTÊNCIA REATIVA FASE 1 POSITIVA			\Rightarrow	
0202	ON – POTÊNCIA ATIVA FASE 3 POSITIVA			\Leftarrow	
0201	ON – POTÊNCIA ATIVA FASE 2 POSITIVA			\Leftrightarrow	
0200	ON – POTÊNCIA ATIVA FASE 1 POSITIVA			\Leftrightarrow	

Endereçamento do Módulo de Energia

A posição do jumper de endereçamento (**ST1**) é fornecida pelo aplicativo WinSUP 2, durante a configuração do hardware a ser utilizado.

JUMPER	POSIÇÃO	FUNÇÃO
	A (*)	ENDEREÇAMENTO A PARA MÓDULO DE ENERGIA
	В	ENDEREÇAMENTO B PARA MÓDULO DE ENERGIA
	С	ENDEREÇAMENTO C PARA MÓDULO DE ENERGIA
ST1	D	ENDEREÇAMENTO D PARA MÓDULO DE ENERGIA
311	E	ENDEREÇAMENTO E PARA MÓDULO DE ENERGIA
	F	ENDEREÇAMENTO F PARA MÓDULO DE ENERGIA
	G	ENDEREÇAMENTO G PARA MÓDULO DE ENERGIA
	H	ENDEREÇAMENTO H PARA MÓDULO DE ENERGIA

(*) Posição default

O usuário tem a sua disposição, todas as unidades digitais e analógicas presentes na série MPC4004 podendo assim incrementar o controle dos processos que envolvem a medição de parâmetros elétricos.

Baseado nas CPU's de 16 bits (com processador XA), é possível integrar até 08 módulos 4004.45, sendo necessário observar se consumo total dos módulos não ultrapassa a capacidade da fonte utilizada.

Utilizando o Aplicativo WinSUP 2

Para inserir uma placa Slave, siga os seguintes passos:

- 1. Na guia "Expansões" da Configuração de Hardware, clique no botão Configurar;
- 2. Na Árvore de Expansões, abra a opção "Slaves";
- 3. Dentre as opções disponíveis, escolha a placa que deseja inserir;
- 4. Para inseri-la em uma posição livre do bastidor, existem 3 maneiras:
 - **1.1-** Selecione, na *Tabela de Expansões,* a linha correspondente ao slot que deseja preencher;
 - **1.2-** Dê um duplo-clique sobre o módulo slave selecionado na Árvore de Expansões;

2.1- Clique e arraste o módulo slave selecionado na *Árvore de Expansões,* para a linha correspondente ao slot que deseja preencher, na *Tabela de Expansões;*

3.1- Clique e arraste o módulo slave selecionado na *Árvore de Expansões,* para o slot desejado no *Bastidor*,

Para acessar as configurações de uma placa slave, utilize um dos procedimentos mostrados abaixo:

No Bastidor dê um duplo-clique sobre a imagem da placa slave que deseja configurar;

Na *Tabela de Expansões* dê um duplo-clique sobre a linha correspondente à placa slave que deseja configurar;

Clique com o botão direito no mouse sobre o *Bastidor* ou a *Tabela de Expansões* (na placa que deseja configurar) e selecione a opção "*Propriedades*";

Configurando o Módulo de Energia :

O módulo de energia 4004.45 utiliza 16 estados internos e 96 registros para trocar informações. Para este módulo, estão disponíveis as definições de um registro inicial e um El inicial para atualização dos parâmetros medidos, bem como a possibilidade de atualizar a slave dentro da Int2.

Definição do registro inicial:

O registro inicial a ser utilizado pela slave é definido no campo "Reg. inicial";

Definição do El inicial:

O El inicial a ser utilizado pela slave é definido no campo "El inicial";

Dica: Para facilitar a localização dos registros, comece sempre no início de uma página.

Visando facilitar o entendimento da programação dos módulos, será mostrado o mapeamento tendo como referências os seguintes ponteiros:

- Primeiro Registro: 0600h (poderia ser 0800h, 1000h, 2000h, etc.)
- Primeiro estado interno: 0200h (poderia ser 0250h, 0320h ,etc.) (ver mapeamento do módulo de energia)
- Atualização na Int2:

Marque a opção "*Habilita a atualização desta slave na Int2*", para que a slave seja atualizada dentro do programa de Int2;

• Programa de Interrupção 1

Para que o programa de *Int1* seja executado, é necessário antes habilitá-lo em *Configuração de Hardware*.

Uma vez habilitada, o programa *Int1* será executado na transição de OFF para ON da entrada **102** (E3 da CPU).

Quando um programa de interrupção é chamado, a execução do *scan* é interrompida, e o programa de interrupção é executado. Esse procedimento é adotado em situações que exijam do CLP uma ação imediata, independente do ponto do scan em que o CLP está. Tão logo o programa de interrupção é executado, a CPU volta ao ponto em que havia interrompido o *scan*.

Para tornar mais eficiente a execução do programa Int1, ao habilitá-lo, é possível selecionar as tarefas que irão ser executadas junto à interrupção:

Atualiza entradas digitais de 100 a 107: No instante em que o programa de interrupção é chamado, lê as entradas digitais de 100 a 107 (CPU) e atualiza os seus estados lógicos na memória.

Atualiza entradas analógicas: No instante em que o programa de interrupção é chamado, lê as entradas analógicas e atualiza os valores de cada entrada na memória.

Atualiza saídas digitais 180 a 187: Imediatamente após o programa de interrupção ser executado, o estado físico das saídas de 180 a 187 (CPU) é atualizado de acordo com a memória.

Atualiza saídas analógicas: Imediatamente após o programa de interrupção ser executado, as saídas analógicas são atualizadas de acordo com o valor de memória de cada uma delas.

Atualiza Contadores rápidos I e II: No instante que o programa de interrupção é chamado os efetivos dos contadores rápidos são todos atualizados conforme pulsos recebidos.

Importante: O programa Int1 tem prioridade sobre a Int2, isso significa que se por algum motivo a Int2 estiver rodando e ocorrer uma interrupção na Int1 o programa da Int2 será interrompido, o programa da Int1 será executada e ao final, a interrupção retornará para onde a Int2 havia parado.

• Programa de Interrupção 2

Para que o programa de Int2 seja executado, é necessário antes habilitá-lo em Configuração de Hardware.

Quando um programa de interrupção é chamado, a execução do *scan* é interrompida, e o programa de interrupção é executado. Esse procedimento é adotado em situações que exijam do CLP uma ação imediata, independente do ponto do scan em que o CLP está. Tão logo o programa de interrupção é executado, a CPU volta ao ponto em que havia interrompido o *scan*.

Para tornar mais eficiente a execução do programa Int2, ao habilitá-lo, é possível selecionar as tarefas que irão ser executadas junto à interrupção:

Atualiza entradas digitais de 100 a 107: No instante em que o programa de interrupção é chamado, lê as entradas digitais de 100 a 107 (CPU) e atualiza os seus estados lógicos na memória.

Atualiza entradas analógicas: No instante em que o programa de interrupção é chamado, lê as entradas analógicas e atualiza os valores de cada entrada na memória.

Atualiza saídas digitais 180 a 187: Imediatamente após o programa de interrupção ser executado, o estado físico das saídas de 180 a 187 (CPU) é atualizado de acordo com a memória.

Atualiza saídas analógicas: Imediatamente após o programa de interrupção ser executado, as saídas analógicas são atualizadas de acordo com o valor de memória de cada uma delas.

Atualiza contadores rápidos I e II: No instante que o programa de interrupção é chamado, os efetivos dos contadores rápidos são todos atualizados conforme pulsos recebidos.

Atualiza saídas digitais 190 a 19F: Imediatamente após o programa de interrupção ser executado, o estado físico das saídas de 190 a 19F é atualizado de acordo com a memória.

Atualiza 8 primeiros ângulos: No instante que o programa de interrupção é chamado, os 8 primeiros ângulos do contador rápido (CPU) em modo ângulo são atualizados.

Uma vez habilitada, o programa *Int2* será executado periodicamente, de acordo com o intervalo definido pelo usuário em *Configuração de Hardware,* seleção *Habilita programa de interrupção 2,* botão *Opções.* Os intervalos possíveis vão de 2 a 10 ms.

Importante: O programa Int1 tem prioridade sobre a Int2, isso significa que se por algum motivo a Int2 estiver rodando e ocorrer uma interrupção na Int1 o programa da Int2 será interrompido, o programa da Int1 será executado e ao final a interrupção retornará para onde a Int2 havia parado.

• Canais de Comunicação Serial

A série **MPC4004** possui dois canais de comunicação serial: canal A (RS232) e canal B (RS485). Os dois canais podem ser utilizados simultaneamente, podendo ter as seguintes taxas de comunicação 1200, 2400, 4800, 9600, 19200, 28800 e 57600.

Recursos Disponíveis

Definição das combinações dos recursos disponíveis para os canais de comunicação da série MPC4004.

	APR03 Escravo	APR03 Mestre	Modbus Escravo	Modbus Mestre	Instrução Print	Escuta Canal Serial
RS232	SIM	NÃO(*)	(**)	NÃO	SIM	SIM
RS485	SIM	SIM	SIM	SIM	SIM	SIM

(*) As CPUs com processador XA possuem o recurso de APR03 Mestre.

(**) Implementado a partir dos firmwares 400402VD e 400402KD.

Informações adicionais:

Canal A padrão elétrico RS232

Canal B padrão elétrico RS485 (até 32 elementos conectados em rede) conexão em // (paralelo)

Utilizando o Aplicativo WinSUP 2

A programação da taxa de comunicação dos canais seriais do CLP é feita na guia "**Geral**" da janela *Configurações de Hardware*, nos campos mostrados abaixo:

-Comunic poão				
comunicaça	,	APR03	Modbus	Print
ConstA	Baud	57600 💌	57600 💌	57600 💌
RS-232	Paridade	Nenhuma 🔽	Nenhuma 🔽	Nenhuma 💌
	Tamanho	8 🔽	8 🔽	8 💌
	Stop bits	1 🔽	1 💌	1 💌
		APR03	Modbus	Print
	Baud	APR03	Modbus	Print 57600 💌
Canal B	Baud Paridade	APR03 57600 💌 Nenhuma 💌	Modbus 57600 💌 Nenhuma 🔽	Print 57600 💌 Nenhuma 💌
Canal B RS-485	Baud Paridade Tamanho	APR03 57600 💌 Nenhuma 💌 8	Modbus 57600 V Nenhuma V 8 V	Print 57600 V Nenhuma V 8 V
Canal B RS-485	Baud Paridade Tamanho Stop bits	APR03 57600 Nenhuma 8 1	Modbus 57600 Nenhuma 8 1	Print 57600 ▼ Nenhuma ▼ 8 ▼ 1 ▼

Fig. 49.- Programação das taxas de comunicação

• Aplicações Especiais com o Controlador MPC4004

		MPC4004	MPC4004G	MPC4004L
Comparação Automática de Registros		Sim	Sim	Não
Movimentação de Dados Através de El		Sim	Sim	Não
Simulador de Ângulo		Sim	Sim	Não
Contodor Bánido	Modo Normal	Sim	Sim	Sim
	Modo Ângulo	Sim	Sim	Não
Temporizadores / Contador	es de Firmware	Sim	Sim	Sim
Temporizadores de 0,01ms		Sim	Sim	Sim
Motor de Passo	_	Sim	Sim	Não
Envio de Caracteres através	s do Canal Serial	Sim	Sim	Sim
Leitura de Caracteres atrave	és do Canal Serial	Sim	Sim	Sim
Comunicação Background		Sim	Sim	Não
Impressão de Dados (TXPR)	Sim	Sim	Sim

Comparação Automática de Registros:

Esse recurso executa a comparação de uma sequência de registros (definidos a partir de um registro qualquer) com uma sequência de outros registros (presets) automaticamente, sem a necessidade de fazer estas comparações no programa ladder.

Cada preset tem um El associado, que sinaliza o resultado da comparação. Assim que o registro escolhido atingir o valor do primeiro preset, o primeiro El sinalizará; quando atingir o valor do segundo preset, o segundo El sinalizará, e assim por diante.

Utilizando o Aplicativo WinSUP 2

Para configurar esse recurso, selecione a opção "Habilita comparação automática de registros", na guia "Geral" da janela *Configuração de Hardware*, e em seguida acione o botão **Opções**.

Essa janela possui 4 campos:

Preset Inicial: Esse é o endereço do primeiro registro de preset; todos os outros presets virão em seqüência. Esse valor não pode ser modificado.

El inicial: Endereço do primeiro El de comparação. Cada registro de preset está associado a um El, que sinaliza o resultado da comparação. Essa associação é direta: o primeiro preset está associado ao primeiro El; o segundo preset ao segundo El, etc.

Estado Interno OFF --> preset > registro Estado Interno ON --> preset <= registro

O endereço do primeiro El pode ser configurado pelo usuário.

Registro Inicial: Este é o endereço do primeiro registro. Os outros efetivos serão alocados em sequência. É possível utilizar até 12 efetivos diferentes. Esse endereço pode ser configurado pelo usuário, podendo ser utilizado qualquer seqüência de registros livres do CLP.

Número de Presets: Nesse campo, é definido o número de presets que serão associados a cada registro. Assim, se configuramos 5 presets no primeiro canal, os primeiros cinco presets serão associados ao primeiro registro definido pelo usuário, e o sexto preset da seqüência original será o primeiro preset do *segundo* registro.

Para desabilitar um registro, basta programar zero presets no mesmo, que todos os canais subseqüentes serão desabilitados.

O número máximo de presets/Estados Internos de Comparação é de 64.

Movimentação de Dados Através de El:

Esse recurso associa uma sequência de Estados Internos a uma sequência de registros (preset's). Quando um desses El's é acionado, o valor do preset associado a esse El é colocado no destino escolhido pelo programador.

Utilizando o Aplicativo WinSUP 2

Para configurar esse recurso, selecione a opção "Habilita movimentação de dados através de El", na guia "Geral" da janela *Configuração de Hardware*, e em seguida acione o botão Opções.

Essa janela possui 4 campos:

Preset Inicial (origem): Esse é o endereço do primeiro registro de preset; todos os outros presets virão em sequência. Esse valor não pode ser modificado.

El inicial: Endereço do primeiro Estado Interno. Cada registro de preset está associado a um Estado Interno. Essa associação é direta: o primeiro preset está associado ao primeiro EI; o segundo preset ao segundo EI, e assim por diante.

O endereço do primeiro El pode ser configurado pelo usuário.

Registro Inicial (destino): Este é o endereço do primeiro registro-destino escolhido pelo usuário. Os outros registros serão alocados em sequência. É possível utilizar até 12 registros diferentes.

Esse endereço pode ser configurado pelo usuário, podendo ser utilizado qualquer seqüência de registros livres do CLP.

Número de Presets: Nesse campo, é definido o número de presets que serão associados a cada registro. Assim, se configuramos 5 presets no primeiro canal, os primeiros cinco presets serão associados ao primeiro registro definido pelo usuário, e o sexto preset da sequência original será o primeiro preset do segundo registro. Neste mesmo exemplo, quando o sexto El for acionado, o valor do sexto preset será colocado no segundo registro.

Para desabilitar um registro, basta programar zero presets no mesmo. Todos os canais subsequentes serão desabilitados.

O número máximo de presets/Estados Internos é de 64.

Simulador de Ângulo

É possível obter nos Módulos de Processamento relacionados com os drivers **MPC4004** e **MPC4004G** uma simulação de um sinal de um transdutor angular utilizando o timer interno do processador. Esta situação é denominada de Modo Ângulo Simulado não havendo necessidade de ter o transdutor angular nem o contador de alta velocidade. Para esta simulação é necessário definir o setpoint em **RPM** (4.0 a 180.0) e desbloquear o estado interno da contagem para o modo ângulo simulado. Quando o Modo Ângulo Simulado está habilitado não é possível utilizar o contador rápido no Módulo de Processamento nos modos normal ou ângulo.

Mapeamento de Memória

ESTADOS INTERNOS RELACIONADOS					
003F 0030	16 EI DE ÂNGULOS	(Modo Ângulo Simulado)			
00DF	BLOQUEIO DE CONTAG	EM (Simulador de Ângulo)			

REGISTROS ASSOCIADOS				
04D7 04D6	EFETIVO PRA O MODO ÂNGULO SIMULADO			
04D1 04D0	SETPOINT PARA O MODO ÂNGULO SIMULADO (RPM)	(1) (2)		
053F 0500	16 SETPOINTS DE ÂNGULOS INICIAIS/FINAIS	(3)		

(1) Valores entre 0 e 4 RPM serão sempre 4 RPM.

(2) O valor máximo para o setpoint é de 180.0 RPM.

(3) Estrutura de dados dos ângulos iniciais/finais. (Ver página 163)

Contador Rápido (Presente no Módulo de Processamento)

O Contador Rápido no Módulo de Processamento destina-se a medições de posicionamentos através da contagem de pulsos (0000 a 9999) à freqüência máxima de 3 kHz.

Este contador receberá sinal de pulso na entrada E100 (unidirecional) ou E100 e E101 (bidirecional).

Para configurar as entradas é necessário verificar os jumpers contidos na CPU:

PLACA	JUMPER	POSIÇÃO	FUNÇÃO
404 2006 """	ст <u>э</u>	A	Encoder unidirecional
101.2806 "P" ou 101.2807 "N"	512	В	Encoder bidirecional
	ST3	A	Encoder bidirecional
	313	В	Encoder unidirecional

Default: bidirecional

<u>Observação:</u> a CPU do MPC4004 é composta por duas placas de circuito impresso. Os jumpers de definição do encoder encontram-se na placa inferior. Para acessá-los é necessário remover a placar superior, retirando os parafusos de fixação.

Após alterar os jumpers ao remontar as placa verificar se a conexão entre as mesmas está correta.

O contador rápido pode atuar em dois modos:

- Modo Normal
- Modo Ângulo

Modo Normal

Este modo de funcionamento permite uma contagem de pulsos de 0000 a 9999, com a possibilidade de:

- Zerar a contagem através de estado interno de RESET.
- Carregar um valor inicial para contagem através de estado interno de LOAD VALOR INICIAL.
- Bloquear a contagem através de estado interno de BLOQUEIO.
- Habilitar a saída física de comparação através de estado interno HABILITA SAÍDA.

Neste modo existem ainda os estados internos de comparação (>, < e =) entre um valor de setpoint e o valor efetivo do contador, estes estados internos são de leitura para o programa de usuário.

A cada pulso amostrado, um registro de contagem é incrementado e uma comparação é executada com um valor de setpoint pré-definido pelo usuário. O resultado da comparação é deixado em disponibilidade através de estados internos específicos que podem ser usados no programa de usuário. O resultado da comparação também é colocado em três saídas físicas configuradas pelo usuário (**S180** a **S187**).

Importante: Não há marca de zero.

Modo Ângulo

Este modo tem como diferença em relação ao anterior a contagem, que varia de um valor da marca zero para sentido crescente. Esta marca zero pode ou não corresponder ao sinal de referência (Z e seu complementar).

Desta maneira a utilização de um encoder angular com 360 pulsos por volta, poderia determinar como marca crescente o valor 0000 e limitando a contagem entre os valores 0000 a 0359.

Neste modo existem ainda 16 estados internos (denominados estados internos de ângulos) que são resultados de comparação entre o valor efetivo da contagem e 16 regiões definidas através de setpoints denominados presets iniciais e finais. Se o valor do preset inicial for menor que o valor do preset final, um estado interno correspondente permanecerá fechado (**ON**) enquanto o valor efetivo da contagem pertencer dentro do intervalo definido. Se o preset inicial for maior que o preset final, um estado interno correspondente permanecerá aberto (**OFF**) enquanto o valor efetivo da contagem pertencer dentro do intervalo definido.

Importante: O sinal da marca zero deve ser conectado à entrada E103 do Módulo de Processamento

ESTADOS INTE	ESTADOS INTERNOS RELACIONADOS			
00D7	EI RESERVADO		(2)	
00D6	EFETIVO < SETPOINT CONTADOR RÁPIDO (Modo Normal)	(2)		
00D5	EFETIVO = SETPOINT CONTADOR RÁPIDO (Modo Normal)		(2)	
00D4	EFETIVO > SETPOINT CONTADOR RÁPIDO (Modo Normal)		(2)	
00D3	HABILITA SAÍDAS CONTADOR RÁPIDO (Modo Normal)	(1)		
00D2	BLOQUEIA CONTAGEM DO CONTADOR RÁPIDO (Modo Normal)	(1)		
00D1	LOAD VALOR INICIAL NO EFETIVO DO CONTADOR RÁPIDO (Modo Normal)	(1)		
00D0	RESET EFETIVO CONTADOR RÁPIDO (Modo Normal)	(1)		
003F 0030	16 EI DE ÂNGULOS (Modo Ângulo)			(3)

Mapeamento de Memória

(1) estados escritos como saída no software de usuário, para uso no software básico.

(2) estados de leitura apenas pelo software usuário.

(3) estes estados passam a ser de uso geral quando o contador rápido do módulo de processamento está no modo normal.

REGISTROS ASSOCIADOS - Modo normal ⁽¹⁾		
04DB 04DA	VALOR INICIAL	
04D9 04D8	VALOR A SER CARREGADO NO EFETIVO QUANDO A CONTAGEM PASSAR PELA MARCA DE ZERO NO SENTIDO DECRESCENTE	
04D7 04D6	EFETIVO	
04D5 04D4	RESERVADO	
04D3 04D2	SETPOINT	
04D1 04D0	RESERVADO	

REGISTROS ASSOCIADOS - Modo ângulo ⁽²⁾		
04DB 04DA	VALOR DA MARCA ZERO PARA SENTIDO DECRESCENTE	
04D9 04D8	VALOR DA MARCA ZERO PARA SENTIDO CRESCENTE	
04D7 04D6	EFETIVO	
04D5 04D4	RESERVADO	
04D3 04D2	RESERVADO	
04D1 04D0	VALOR EM RPM (3)	

 (1) No modo normal a contagem é feita do VALOR INICIAL até o SETPOINT.
 (2) No modo ângulo o valor da marca zero para sentido decrescente é igual ao número de pulsos por volta menos um.

(3) O cálculo do valor em RPM é feito só no modo ângulo e considerando-se encoder de 360 pulsos/volta, independentemente do encoder realmente usado.

ESTRUTURA DE DADOS PARA ÂNGULOS INICIAIS E FINAIS			
051E	ÂNGULO FINAL 08	053E	ÂNGULO FINAL 16
051C	ÂNGULO INICIAL 08	053C	ÂNGULO INICIAL 16
051A	ÂNGULO FINAL 07	053A	ÂNGULO FINAL 15
0518	ÂNGULO INICIAL 07	0538	ÂNGULO INICIAL 15
0516	ÂNGULO FINAL 06	0536	ÂNGULO FINAL 14
0514	ÂNGULO INICIAL 06	0534	ÂNGULO INICIAL 14
0512	ÂNGULO FINAL 05	0532	ÂNGULO FINAL 13
0510	ÂNGULO INICIAL 05	0530	ÂNGULO INICIAL 13
050E	ÂNGULO FINAL 04	052E	ÂNGULO FINAL 12
050C	ÂNGULO INICIAL 04	052C	ÂNGULO INICIAL 12
050A	ÂNGULO FINAL 03	052A	ÂNGULO FINAL 11
0508	ÂNGULO INICIAL 03	0528	ÂNGULO INICIAL 11
0506	ÂNGULO FINAL 02	0526	ÂNGULO FINAL 10
0504	ÂNGULO INICIAL 02	0524	ÂNGULO INICIAL 10
0502	ÂNGULO FINAL 01	0522	ÂNGULO FINAL 09
0500	ÂNGULO INICIAL 01	0520	ÂNGULO INICIAL 09

Exemplo: Seja o primeiro ângulo inicial de 0º e primeiro ângulo final de 150º:

0500h	0501h	0502h	0503h
00	00	01	50

Utilizando o Aplicativo WinSUP 2

Na guia "**Geral**" da janela *Configuração de Hardware,* marque a opção "**Contador rápido**", escolha o modo do contador e clique no botão **Opções**, onde uma janela para definição das saídas do contador se abrirá, como mostra a figura abaixo:

Contador rápido / Simulador	Modo do co	ntador 		
 Contador rápido 	- ÷ .	Contador rá	pido	×
O Simulador de ângulo	C Angulo	Compara	ação	Saída
		Efetivo > S	etpoint Ne	enhuma 💌
		Efetivo = S	etpoint Ne	enhuma 💌
		Efetivo < S	etpoint Ne	enhuma 💌
			<u>о</u> к	<u>C</u> ancelar

Fig. 50. - Contador Modo Normal

Escolha uma das saídas digitais para relacionar com o resultado da comparação do efetivo com o setpoint do contador de alta velocidade presente no módulo de processamento. Conforme o resultado da comparação, a saída relacionada é automaticamente ativada.

Caso não queira relacionar a saída digital escolha a opção "Nenhum".

Clique no botão "OK" para confirmar os valores.

Temporizadores e Contadores

O aplicativo WinSUP 2, possibilita simular Temporizadores com retardo na energização e Contadores, através das Instruções **TMR** (Temporizador) e **CNT** (Contador).

O estado interno relacionado ao Temporizador passa de desacionado (OFF) para acionado (ON) quando o Efetivo atingir o Preset de tempo programado.

Também para o Contador os estados internos são acionados quando o Efetivo da contagem atingir o Preset.

Os Temporizadores possuem base de tempo de **0,01** segundos, tendo assim o tempo máximo de **99,99** segundos.

Estão disponíveis ao usuário **32**^{*} Temporizadores ou Contadores.

* - Total utilizado em um programa somando contadores e temporizadores.

Mapeamento de Memória

ESTADOS INT	ESTADOS INTERNOS RELACIONADOS		
001F 0000 32 TEMPORIZADORES/CONTADORES			
REGISTROS ASSOCIADOS			
047F 0440	32 EFETIVOS DE TEMPORIZADOS/CONTADORES		
043F	32 PRESETS DE TEMPORIZADORES/CONTADORES		

Abaixo temos uma tabela realizando a referência cruzada dos Estados Internos, Presets e Efetivos dos Temporizadores/Contadores:

N٥	ESTADO INTERNO	PRESET	EFETIVO
1	0000h	0400h	0440h
2	0001h	0402h	0442h
3	0002h	0404h	0444h
4	0003h	0406h	0446h
5	0004h	0408h	0448h
6	0005h	040Ah	044Ah
7	0006h	040Ch	044Ch
8	0007h	040Eh	044Eh
9	0008h	0410h	0450h
10	0009h	0412h	0452h
11	000Ah	0414h	0454h
12	000Bh	0416h	0456h
13	000Ch	0418h	0458h
14	000Dh	041Ah	045Ah
15	000Eh	041Ch	045Ch
16	000Fh	041Eh	045Eh

N°	ESTADO INTERNO	PRESET	EFETIVO
17	0010h	0420h	0460h
18	0011h	0422h	0462h
19	0012h	0424h	0464h
20	0013h	0426h	0466h
21	0014h	0428h	0468h
22	0015h	042Ah	046Ah
23	0016h	042Ch	046Ch
24	0017h	042Eh	046Eh
25	0018h	0430h	0470h
26	0019h	0432h	0472h
27	001Ah	0434h	0474h
28	001Bh	0436h	0476h
29	001Ch	0438h	0478h
30	001Dh	043Ah	047Ah
31	001Eh	043Ch	047Ch
32	001Fh	043Eh	047Eh

Importante: No aplicativo WinSUP 2 o usuário tem disponível o Mapeamento de Memória da série **MPC4004**, para acessá-lo basta teclar [Shift+F1], em qualquer menu.

Temporizadores (0,001s)

Existem 2 temporizadores de 0,001s que podem atingir o valor máximo de 9,999 seg.

Quando é ativado o estado interno 0020h o temporizador 1 (de valor efetivo 0542h e 0543h) é inicializado, terminando quando atingir o seu preset (em 0540h e 0541h), sendo que durante a contagem a saída relacionada **S186** permanecerá ativada.

A saída **S186** é acionada ao início da contagem e desacionada ao término da mesma, podendo ser desacionada pelo usuário independentemente do estado interno 0020h.

O mesmo ocorre para o estado interno 0021h e a saída relacionada S187 do temporizador 2.

Mapeamento de Memória

ESTADOS INTERNOS RELACIONADOS		
0021	HABILITA TEMPORIZADOR 02	
0020	HABILITA TEMPORIZADOR 01	

REGISTROS A	REGISTROS ASSOCIADOS		
0547 0546	EFETIVO DO TEMPORIZADOR 02		
0545 0544	PRESET DO TEMPORIZADOR 02		
0543 0542	EFETIVO DO TEMPORIZADOR 01		
0541 0540	PRESET DO TEMPORIZADOR 01		

Importante: Os estados internos e registros serão utilizados para os 2 temporizadores de 0,001s quando configurados pelo usuário, casos contrários serão de uso geral.

A habilitação dos temporizadores de 0,001s, é feita utilizando diretamente a pseudo-instrução **TM1** ou **TM2**.

Motor de Passo

A série MPC4004 permite o acionamento de 1 motor de passo de 4 fases X 2 A (corrente máxima por fase), podendo ser ligado diretamente nas saídas do controlador. As saídas utilizadas são:

Modo 4 fases

• Motor de Passo controlado pelas 4 saídas S180 a S183, sendo as demais 184 a 187, de uso geral.

Estados Internos Relacionados

	MODO 4 FASES
EI	Descrição
200	HABILITA TORQUE
201	BLOQUEIO DE CONTAGEM
202	MODO DE FUNCIONAMENTO
203	SENTIDO DE ROTAÇÃO
204	POSIÇÃO ALCANÇADA
205	TIPO DE PASSO
206	RESET DO EFETIVO

Descrição dos estados internos relacionados:

200- habilita torque - quando ativado energiza o motor com o último passo ativo.

201- bloqueio de contagem - quando ativado inibirá a progressão de contagem, parando o motor instantaneamente deixando torque no eixo do motor.

202- escolha do modo de funcionamento :

Ativado - modo contínuo Desativado - modo posição

Modo contínuo - nesta condição após a habilitação do motor , o mesmo começará a girar indefinidamente

Modo posição - nesta condição , o motor se deslocará uma quantidade programada de pulsos , parando com torque no final da contagem.

203- sentido ativado horário , desativado anti-horário

Observação: a direção de rotação está relacionada à seqüência de pulsos que o motor irá receber, desta forma para mudar a direção de rotação basta inverter a seqüência de acionamento das fases o motor .

204- posição alcançada . Este estado interno será ligado toda vez que o motor estando no modo posição e após ser habilitado, atingir a posição definida nos endereços 4D8/4DB.

205- escolha do tipo de passo : desligado - meio passo ligado - passo inteiro

Observação: a escolha de meio passo permite dobrar a resolução do motor .

206- Reset do efetivo - Ao ser ativado colocará zeros nos endereços 4D4/4D5 e 4D6/4D7

Registros relacionados :

4D8 e 4DA - preset do número de passos, 8 dígitos (0000000 à 99999999) (modo posição)
4D4 e 4D6 - efetivo de contagem dos passos, 8 dígitos (00000000 à 99999999) (modo posição)
4D0 e 4D1 - valor de velocidade min. 5.0 RPM máx 180.0 RPM

Observação: A velocidade do motor em RPM calculada diferente para cada uma das configurações do motor de passo. Para o modo 4 fases, considera-se um motor de 360 passos por volta, Já para o modo de gerador de pulsos, considera-se um motor com número de passos por volta definido na configuração.

A velocidade máxima efetivamente alcançada depende do tipo de motor que se está utilizando, bem como do torque necessário ao processo (Quanto mais veloz menor será o torque do motor).

Tabelas de acionamento do modo 4 fases:

Passo inteiro

	S180	S181	S182	S183
1	ON	OFF	ON	OFF
2	ON	OFF	OFF	ON
3	OFF	ON	OFF	ON
4	OFF	ON	ON	OFF
1	ON	OFF	ON	OFF

Meio passo

	S180	S181	S182	S183
1	ON	OFF	ON	OFF
2	ON	OFF	OFF	OFF
3	ON	OFF	OFF	ON
4	OFF	OFF	OFF	ON
5	OFF	ON	OFF	ON
6	OFF	ON	OFF	OFF
7	OFF	ON	ON	OFF
8	OFF	OFF	ON	OFF
1	ON	OFF	ON	OFF

Interligação Física com o Controlador Programável (válido para módulos tipo "N")

As saídas do controlador programável podem ser divididas em dois módulos:

Circuito de controle: necessita de uma tensão de 24V /10mA para funcionar .

Circuito de potência: pode ser considerado um circuito com coletor aberto, permitindo a conexão de tensões que podem variar de 3 a 30V com correntes de até 2 A.

Desta forma, uma vez polarizado o circuito de controle em 24V, a ligação do motor de passo nas saídas poderá ser feito com tensões mais baixas por ex. 5V , sem a necessidade de limitadores de tensão.

Esquema de Ligação

Fig. 51. - Esquema de ligação entre Motor de Passo e Controlador Programável

Utilizando o Aplicativo WinSUP 2

Para ativar o modo motor de passo, é necessário marcar a opção **"Habilita motor de passo"**, na guia **"Geral**" da janela *Configuração de Hardware*. Nesta condição os registros/El's do modo motor de passo estarão reservados para a aplicação.

Envio de Caracteres Através do Canal Serial (Instrução PRINT)

Envio de caracteres para um dispositivo externo, como uma impressora serial, servo motores, modem, etc.

Estados Internos Relacionados

- **0FB** Habilita modo Print
- **0BD** Determina para qual canal serial será enviado os caracteres
 - desligado canal RS232 / ligado canal RS485
- **0FC** estado interno que indica canal serial ocupado ou seja durante a transmissão dos dados ele ficará ligado.

Este estado auxilia o usuário a sincronizar o envio de várias mensagens.

Funcionamento: A o habilitar o modo print (El 0FB ligado), e selecionado o canal a ser enviado, o usuário deverá ativar a instrução "PRINT" através de um "MONOA para enviar os dados através do canal serial".

Importante: O estado 0FB deve ficar ativo durante todo o tempo de transmissão dos dados.

Ao ativar o estado 0FB, o controlador não mais poderá receber programação através do WinSUP 2, pois seu canal serial fica reservado para o envio de dados.

A taxa de transmissão para o modo print é definida pelo usuário no menu de configuração de hardware. (para maiores detalhes ver o item "Canais de comunicação serial" página 95).

Leitura de Caracteres Através do Canal Serial

Lê caracteres de um dispositivo externo como leitor de código de barras, servo motores, retorno de conexão com modem, etc.

Registros e Estados Internos Relacionados

- **0AB** Habilita leitura de caracteres do canal serial
- **0FB** Habilita modo Print
- **0E00 0EFE** Buffer de recepção dos caracteres (255 máx.)
- **0FE4/0FE5** Registro contador de caracteres recebido
- **0BD** Determina qual canal serial receberá os caracteres desligado canal RS232 / ligado canal RS485

Funcionamento: Estando em modo Print (El 0FB ligado), e com o estado interno especial "0AB" também ligado, os dados recebidos em RX do canal de comunicação RS232 são armazenados a partir do endereço 0E00 até um limite de 255 caracteres, configurável pelo usuário.

Quando o estado "0AB" estiver desligado , os caracteres recebidos em RX do canal de comunicação RS232 são ignorados .

A quantidade de bytes recebidos é atualizada no registro 0FE4/0FE5.

A transição de off para on do estado interno 0AB, provoca a limpeza do buffer (colocação do valor "FF" entre 0E00 e 0EFF) e o zeramento do registro contador de caracteres recebidos .

funcionamento do estado interno 0AB :

Fig. 52. - Funcionamento do Estado Interno 0AB

Utilizando o Aplicativo WinSUP 2

Na guia "Geral" da janela *Configuração de Hardware,* marque a opção "Configura leitura caractere através canal serial", e clique no botão **Opções**, onde uma janela para definição dos parâmetros se abrirá, como mostra a figura abaixo:

Configura leitura caracter através do canal serial							
🔲 Habilita prog	🚟 Configuração da escuta serial 🛛 💶 🗙						
🔲 Habilita prog	Fuderanda bullar da secondão (2000)						
🔲 Instrução Clv	Tamanho do buffer de recepção 255						
🔲 Habilita El's I							
🔽 Watch dog t							
🔲 Habilita moto	<u> </u>						

Fig. 53. - Configuração para leitura de caracteres pelo canal serial
Impressão de Dados (TXPR)

Existem aplicações em que é necessário a impressão de relatórios pré-formatados ou cabeçalhos em ASCII. O recurso de Impressão de Dados facilita a composição destes relatórios e cabeçalhos.

Utilizando o Aplicativo WinSUP 2

Na guia "**Print**", da janela *Configuração de Hardware*, é possível digitar o texto desejado. O texto digitado é armazenado, em código ASCII, na memória do controlador. Em conjunto com as instruções TXPR e PRINT, este recurso permite a impressão dos textos através de um dos canais seriais do controlador.

O controlador armazena até 16 tabelas de Print, com até 256 bytes cada.

A figura abaixo mostra a guia para configuração das tabelas de Print:

Configuração do projeto	×
Geral Expansão IHM Background Print	
Páginas de impressão 01	
******ATOS na internet****** www.atos.com.br	
<u> </u>	

Definição dos Campos

Páginas de impressão: Identifica as tabelas, mostrando parte de seu conteúdo e seu tamanho, em bytes.

Limpar texto: Apaga o texto da tabela selecionada.

Offset: Mostra a posição em que o caractere está sendo alocado, tendo como referência o primeiro caractere digitado que receberá a posição relativa 00h.

Conteúdo da página: Caixa de texto para a edição do conteúdo da página de impressão selecionada.

Número de colunas: Quantidade de colunas desejadas na tabela (máximo de 40).

CR automático: Insere um caractere de Carrier Return no final de cada linha.

LF automático: Insere um caractere de *Line Feed* no final de cada linha.

Comunicação Background

A série MPC4004 possui o recurso de "mestre de rede" nos seus canais seriais, possibilitando a troca de informações entre controladores através da comunicação background.

A comunicação background é o mecanismo através do qual um CLP pode atuar como mestre de rede. Consiste em uma lista de tarefas realizada ciclicamente pelo CLP, em paralelo com o processamento do programa usuário. Nesta lista de tarefas, é programada a leitura e a escrita, pelo mestre, de registros/El's de dispositivos escravos de rede.

A programação background é útil por exemplo no transporte de alarmes das estações onde o programador terá, além das informações do processo controlado pelo mestre, as informações das estações supervisionadas.

Os CLP's **Atos** podem utilizar dois protocolos de comunicação diferentes para trocar dados entre si: o protocolo APR03 e o protocolo MODBUS RTU.

Utilizando-se um dos dois protocolos suportados, é possível construir uma rede mestre-escravo de até 31 pontos. Em ambos os casos, apenas um dos dispositivos conectados a rede atuará como mestre.

Estados Internos Relacionados:

0AA – Estado interno de definição do canal mestre:

STATUS	FUNÇÃO
LIGADO	Mestre da RS232
DESLIGADO	Mestre da RS485

3D0 - Estado interno de habilitação do modo mestre , ao ser ativado o canal serial escolhido iniciará a varredura na tabela com as regiões a serem atualizadas nas estações. Ao ser desligado, o canal serial volta a ser um canal escravo.

Importante: O canal serial, ao ser definido como mestre, não mais responderá a aplicativos como WinSUP 2, PEP ou sistemas supervisórios, pois estará havendo colisão no canal de comunicação em função de haver 02 dispositivos mestre na rede.

3D1 a 3EF - indicam respectivamente estados internos de falha de comunicação com as estações de 01 a 31.

Quando houver mais de 05 tentativas consecutivas sem sucesso com uma determinada estação, será ligado automaticamente o estado interno de falha, sendo desligado automaticamente quando houver o restabelecimento da comunicação.

Observação: A definição do canal mestre está disponível somente nas CPU's com processador XA. Para os outros modelos o canal padrão para comunicação background é a RS485.

Regiões de comunicação:

É possível definir até 40 regiões de comunicação de 16 bytes cada. Cada região receberá ainda o atributo de enviar para a estação ou receber da estação:

- "Mestre \rightarrow CP" envia os bytes do terminal para o CP
- "Mestre ← CP" envia os bytes do CP para o terminal

Também é possível definir o endereço do mestre e o endereço do CP onde ocorrerá o envio ou recebimento das informações.

Utilizando o Aplicativo WinSUP 2

A programação da comunicação background é feita na guia "**Background**", na janela *Configuração de Hardware*. Uma vez configurada a comunicação background, o CLP irá executar os frames programados, sempre que o estado interno 3D0h estiver ligado.

• Utilizando o protocolo APR03: O protocolo APR03 foi criado pela Atos, sendo utilizado em todos os seus controladores; é do tipo mestre/escravo.

Especificações:	Baud Rate	= 2400, 4800, 9600, 19200, 57600
. ,	Paridade	= nenhuma
	Stop bit	= 1
	Data bit = 8 bits	6

Para ativar o modo mestre do protocolo APR03, siga os seguintes passos:

- **1.** Habilite a comunicação background;
- 2. Selecione o protocolo APR03 na caixa Protocolo.
- **3.** Declare os frames de comunicação, preenchendo os campos End. Mestre, Direção, End. CP, Num. CP e Num. Bytes.
- **4.** Ative o estado interno 3D0h.
 - Utilizando o protocolo MODBUS: O protocolo Modbus foi desenvolvido pela empresa Modicom, sendo implementado o tipo RTU (Remote Terminal Unit) nos CLP's Atos.

Especificações:	Baud Rate Parity	= 2400, 4800, 9600, 19200, 57600 = nenhuma
	Stop Bit	= 1 ou 2 bits configuráveis (1 default)
	Data bit	= 8 bits

Para o protocolo Modbus, as seguintes funções estão disponíveis:

Read Coil Status	(0x01)
- Read Input Status	(0x02)
- Read Holding Registers	(0x03)
- Force Single Coil	(0x05)
- Preset Single Register	(0x06)
- Force Multiple Coils	(0x0F)
- Preset Multiple Registers	(0x10)
Exception Response	(ERROR)

Para ativar o modo mestre do protocolo Modbus, siga os seguintes passos:

- **1.** Habilite a comunicação background
- 2. Selecione o protocolo Modbus na caixa Protocolo.
- **3.** Declare os frames de comunicação, preenchendo os campos End. Mestre, Direção, End. CP, Num. CP e Num. Bytes.
- **4.** Ative o estado interno 3D0h.

<u>Observação:</u> Mais informações sobre o protocolo MODBUS estão disponíveis nos boletins técnicos **B05/00 – Protocolo MODBUS** e **B01/01 – Protocolo MODBUS EXEMPLOS** na área de download do site da **Atos**: <u>www.atos.com.br</u>.

A figura abaixo mostra a guia para configuração da comunicação background:

Con	figu	aç	ão do projeto								×
Ge	ral	Ex	pansão IHM B	ackground	Print						
	Hal	oilita	a comunicação back	ground							-
4	4PRt	13								Protocolo	
	d.	E	Ind. Mestre	End. (CP Núm. (CP Núm, by	ites			APR03	
1			FFFF 🖃	FFFF	1	8			<u>C</u> onfirmar	C Modbus	
Г	1	_		D: "			hu i i	-	Limpar		
h		1	Endereço Mestre	Direçao 	Endereço Up	Numero Up	Numero bytes	1		Timeout (x10 ms) 5	
ĽĽ	1	2	FFFF	>	FFFF	1	8			·	
h	1	3	FFFF	>	FFFF	1	8				
		4	FFFF	>	FFFF	1	8				
		5	FFFF	>	FFFF	1	8				
		6	FFFF	>	FFFF	1	8				
L		7	FFFF	>	FFFF	1	8				
-		8	FFFF	>	FFFF	1	8				
┝	-	9	FFFF	>	FFFF	1	8				
ŀ		10	FFFF	>	FFFF	1	8	-			
-		_									
											_
										<u> </u>	

Fig. 54. - Configuração Background

Definição dos Campos

Endereço Mestre: endereço inicial a ser transmitido ou recebido.

Direção: sentido de transmissão ou recebimento.

Endereço CP: endereço inicial a ser transmitido ou recebido.

Número CP: número do CP na rede.

Número Bytes: quantidade de bytes transmitidos da região de menu.

Observação: quando a comunicação estiver habilitada os CPL's, enviam e recebem dados atualizando-os.

5. Características dos Drivers MPC4004R e MPC4004T

Este capítulo visa a orientação do usuário em relação ao endereçamento, mapeamento de memória e configuração dos drivers MPC4004R e MPC4004T.

A relação das CPU's que compõem cada driver é mostrada abaixo:

DRIVER	CPU's
MPC4004R	4004.05R, 4004.06R e 4004.09R
MPC4004T	4004.05T, 4004.06T e 4004.09T

• Mapeamento de memória

Mapeamento de Memória das CPU's:4004.05R, 4004.06R, 4004.09R, 4004.05T, 4004.06T e 4004.09T

ENDEREÇO	DESCRIÇÃO
FFFF F000	ÁREA DE USO INTERNO DO SISTEMA
EFFF EF00	256 ESTADOS INTERNOS REMANENTES
EEFF E000	3.840 ESTADOS INTERNOS AUXILIARES
DFFF 1000	26.624 REGISTROS LIVRES
0FFF 0FD0	REGISTROS ESPECIAIS
0FCF 0784	1.062 REGISTROS LIVRES
0783 0780	RESERVADO PARA RESTO DAS INSTRUÇÕES DIV,DIVB,DIVBL,DVBLL
077F 0548	284 REGISTROS LIVRES
0547 0540	2 PRESETS E EFETIVOS DOS TEMPORIZADORES DE 1 ms
053F 0500	ÁREA DE CONTAGEM RÁPIDA DO MÓDULO DE PROCESSAMENTO (Modo Ângulo)
04FF 04E0	MÓDULOS DE CONTAGEM RÁPIDA
04DF 04D0	ÁREA DE CONTAGEM RÁPIDA DO MÓDULO DE PROCESSAMENTO
04CF 0480	48 REGISTROS LIVRES
047F 0400	32 PRESETS E EFETIVOS DE TEMPORIZADORES OU CONTADORES
03FF 0000	MEMÓRIA DE ESTADOS INTERNOS

Descrição dos Estados Internos de E000 até EFFF

ENDEREÇO	DESCRIÇÃO
EFFF EF00	256 ESTADOS INTERNOS REMANENTES
EEFF E000	3840 ESTADOS INTERNOS AUXILIARES

Descrição dos Estados Internos de 0000 até 03FF

ENDEREÇO	DESCRIÇÃO
03FF	DIREÇÃO DE CONTAGEM DE PULSO PARA INSTRUÇÃO CTCPU (REMANENTE)
03FE	WATCH DOG TIMER (ATIVO QUANDO O WDT "ENTRAR") DESLIGADO NA PASSAGEM PARA PROG
03FD	SENTIDO DO CONTADOR RÁPIDO 2
03FC	SENTIDO DO CONTADOR RÁPIDO 1
03FB	SINAL DA SAÍDA ANALÓGICA DO CONTADOR RÁPIDO 2
03FA	SINAL DA SAÍDA ANALÓGICA DO CONTADOR RÁPIDO 1
03F9 03F0	10 ESTADOS INTERNOS REMANENTES
03EF 03D1	ESTADOS INTERNOS DE FALHA DE COMUNICAÇÃO COM AS ESTAÇÕES (EI REMANENTE)
03D0	HABILITA MODO MESTRE (EI REMANENTE)
03CF 0380	80 ESTADOS INTERNOS REMANENTES
037F 0207	377 ESTADOS INTERNOS AUXILIARES
0206 0200	ESTADOS INTERNOS MOTOR DE PASSO
01FF 0188	120 ESTADOS INTERNOS AUXILIARES
0187 0180	RESERVADO PARA AS SAÍDAS DIGITAIS DA CPU
017F 0108	120 ESTADOS INTERNOS AUXILIARES
0107 0100	RESERVADO PARA AS ENTRADAS DIGITAIS DA CPU
00FF	OVERFLOW NA SOMA, SUBTRAÇÃO E SCL (2) (3) (5)
00FE	MUDANÇA DE VALOR ATRAVÉS DE TECLADO (2) (5)
00FD	EI ACESSO Ó COMUNICAÇÃO SERIAL CANAL A (RS232) (2) (5)
00FC	ON QUANDO SERIAL OCUPADA (PRINT) (2) (5)
00FB	HABILITA / DESABILITA USO DO CANAL SERIAL (PRINT) (1) (5)
00FA	ON QUANDO RESULTADO DE "COMPARE" < (2) (4)
00F9	ON QUANDO RESULTADO DE "COMPARE" = (2) (4)
00F8	ON QUANDO RESULTADO DE "COMPARE" > (2) (4)
00F7	SEMPRE LIGADO (2)
00F6	SEMPRE DESLIGADO (2)
00F5	ON NA PRIMEIRA VARREDURA (2)
00F4	CLOCK DE 1,0 SEGUNDOS (2)
00F3	CLOCK DE 0,2 SEGUNDOS (2)
00F2	CLOCK DE 0,1 SEGUNDOS (2)
00F1	BLOQUEIO DE TECLADO PARA EDIÇÃO (1)
00F0	BIP DE TECLADO (2)
00EF	POSIÇÃO ZERO CONTADOR RÁPIDO 2
00EE	EFETIVO < SETPOINT CONTADOR RÁPIDO 2

ENDEREÇO	DESCRIÇÃO
00ED	EFETIVO ≥ SETPOINT CONTADOR RÁPIDO 2
00EC	HABILITA SAÍDA EFETIVO ≥ SETPOINT CONTADOR RÁPIDO 2
00EB	HABILITA SAÍDAS CONTADOR RÁPIDO 2
00EA	BLOQUEIO DE CONTAGEM DO CONTADOR RÁPIDO 2
00E9	LOAD SETPOINT INICIAL CONTADOR RÁPIDO 2
00E8	RESET EFETIVO CONTADOR RÁPIDO 2
00E7	POSIÇÃO ZERO CONTADOR RÁPIDO 1
00E6	EFETIVO < SETPOINT CONTADOR RÁPIDO 1
00E5	EFETIVO ≥ SETPOINT CONTADOR RÁPIDO 1
00E4	HABILITA SAÍDA EFETIVO ≥ SETPOINT CONTADOR RÁPIDO 1
00E3	HABILITA SAÍDAS CONTADOR RÁPIDO 1
00E2	BLOQUEIO DE CONTAGEM DO CONTADOR RÁPIDO 1
00E1	LOAD SETPOINT INICIAL CONTADOR RÁPIDO 1
00E0	RESET EFETIVO CONTADOR RÁPIDO 1
00DF	BLOQUEIO DE CONTAGEM (Simulador de Ângulo)
00DE	FICA ATIVO DURANTE A EDIÇÃO DE VALORES (modo RUN) (2)
00DD	ON TECLA <s2> FECHADA / OFF TECLA <s2> ABERTA (2)</s2></s2>
00DC	ON TECLA <s1> FECHADA / OFF TECLA <s1> ABERTA (2)</s1></s1>
00DB	APAGA DISPLAY (5)
000 4	FICA ATIVO DURANTE UMA VARREDURA, TODA VEZ QUE HOUVER UMA MUDANÇA DE VALOR ATRAVÉS DO
UUDA	CANAL DE COMUNICAÇÃO SERIAL CANAL A (RS232) (2) (5)
00D9	TENTATIVA DE EDIÇÃO COM TECLADO BLOQUEADO (2)
00D8	NA TRANSIÇÃO DE OFF PARA ON CARREGA TELA ALVO NO DISPLAY (o nº da tela definido no registro 0FECh) (1) (5)
00D7	ON DURANTE PRIMEIRA VARREDURA QUANDO ZERO EXTERNO LIGADO (Modo Ângulo)
00D6	EFETIVO < SETPOINT CONTADOR RÁPIDO (Modo Normal) (2)
00D5	EFETIVO = SETPOINT CONTADOR RÁPIDO (Modo Normal) (2)
00D4	EFETIVO > SETPOINT CONTADOR RÁPIDO (Modo Normal) (2)
00D3	HABILITA SAÍDAS CONTADOR RÁPIDO (Modo Normal) (1)
00D2	BLOQUEIA CONTAGEM DO CONTADOR RÁPIDO (Modo Normal) (1)
00D1	LOAD VALOR INICIAL NO EFETIVO DO CONTADOR RÁPIDO (Modo Normal) (1)
00D0	RESET EFETIVO CONTADOR RÁPIDO (Modo Normal) (1)
00CF	EDIÇAO DE SENHA ERRADA
00CE	DESATIVA TIME OUT DOS ALARMES
00CD	ACESSO A SERIAL CANAL B (RS485)
00CC	FICA ATIVO DURANTE UMA VARREDURA, TODA VEZ QUE HOUVER UMA MUDANÇA DE VALOR ATRAVES DO CANAL DE COMUNICAÇÃO SERIAL CANAL B (RS485) (2) (5)
00CB 00C0	RESPECTIVAMENTE LED'S DE 1 a 12. (Qualquer LED do frontal acende quando é ativado o seu estado interno)
00BF	TRIGGER DE 1 SEG
00BE	HABILITA PROTOCOLO MODBUS
00BD	LIGADO PRINT NO CANAL B (RS485) / DESLIGADO PRINT NO CANAL A (RS232)
00BC	ESTADO INTERNO REFERENTE À TECLA ESC
00BB	RESPECTIVAMENTE BOTOES DE F1 a F12 (Quando um botão é ativado no frontal do MPC4004 o seu respectivo estado
0080	
00AF	DESABILITA ZERO EXTERNO CONTADOR RAFIDO 2
0040	
00AC	
0040	LIGADO MODO MESTRE NA RS232 / DESLIGADO MODO MESTRE NA RS485
0049	BOTÕES K1 a K9 = (00A0 a 00A8) e K0 = (A09) (Ouando um botão é ativado no frontal do MPC4004 o seu respectivo
00A0	estado interno passa para ON)
0040	96 ESTADOS INTERNOS AUXILIARES

ENDEREÇO	DESCRIÇÃO
003F 0030	16 ESTADOS INTERNOS DE ÂNGULOS (Modo Ângulo ou Modo Ângulo Simulado)
002F 0027	RESERVADO
0026	ON TECLA <edita> FECHADA / OFF TECLA <edita> ABERTA</edita></edita>
0025	ON TECLA <entra> FECHADA / OFF TECLA <entra> ABERTA</entra></entra>
0024	ON TECLA <lock> FECHADA / OFF TECLA <lock> ABERTA (2)</lock></lock>
0023	STATUS DA BATERIA DA CPU – ON = BATERIA FRACA / OFF = BATERIA OK (SOMENTE DRIVER MPC4004T)
0022	LIGADO = MODBUS NA RS232
0021	HABILITA TEMPORIZADOR 02 (Máx. 9,999 segundos)
0020	HABILITA TEMPORIZADOR 01 (Máx. 9,999 segundos)
001F 0000	32 TEMPORIZADORES/CONTADORES (1 a 32) (Máx. 99,99 segundos)

OBSERVAÇÕES:

- estados escritos como saída no software de usuário, para uso no software básico.
- estados de leitura apenas pelo software usuário.
- (1) (2) (3) (4) (5) ativado quando há um overflow na soma ou NÃO há empréstimo na subtração.
- quando não existe HABILITA ativo, os estados são os da última comparação com HABILITA ativo.
- estados internos que não podem ser forçados pelo WinSUP 2.

REGISTROS ESPECIAIS			
0FFF 0FF0	RESERVADO		
OFEF OFEE	NÚMERO DA TELA ATUAL		
0FED 0FEC	NÚMERO DA TELA ALVO (SOFTWARE USUÁRIO) (1)		
0FEB 0FEA	NÚMERO DA TELA DE NAVEGAÇÃO PARA ACESSO À TELA DE AUXÍLIO À MANUTENÇÃO ATRAVÉS DE S1		
0FE9 0FE6	RESERVADO		
0FE5 0FE4	CONTADOR DE CARACTERES RECEBIDOS		
0FE3 0FE2	GAVETA RECUPERADA		
0FE1 0FE0	NÚMERO DE UTILIZAÇÕES DA MEMÓRIA FLASH		
0FDF 0FD0	RESERVADO		

(1) A parte mais significativa do registro deve ser igual a 00, pois a parte menos significativa representa o número da tela em hexadecimal "FF=256".

• Fonte, CPU e IHM

Nos drivers MPC4004R e MPC4004T, é necessário configurar no mínimo, uma fonte e CPU para que o projeto possa ser enviado ao CLP.

Para projetos que envolvam uma IHM é necessário inseri-la na configuração de expansões para que o cálculo de consumo de corrente da fonte (realizado pelo WinSUP 2) seja feito corretamente.

Inserindo uma Fonte no Projeto

Para inserir uma fonte de alimentação, siga os seguintes passos:

1. Na guia "Expansões" da Configuração de Hardware, clique no botão Configurar;

2. Na Árvore de Expansões, abra a opção "Fonte";

3. Escolha o modelo de fonte dentre as opções disponíveis (para ver as especificações de cada uma das fontes, clique aqui);

4. Para inseri-la em no bastidor, existem 3 maneiras:

1.1- Selecione, na *Tabela de Expansões,* a linha A1. Este slot é reservado exclusivamente para uso da fonte de alimentação;

1.2- Dê um duplo-clique sobre a fonte selecionada na Árvore de Expansões;

2.1- Clique e arraste a fonte selecionada na *Árvore de Expansões,* para a linha correspondente ao slot A1 (reservado exclusivamente para uso da fonte de alimentação), na *Tabela de Expansões;*

3.1- Clique e arraste a fonte selecionada na *Árvore de Expansões,* para o slot A1 (reservado exclusivamente para uso da fonte de alimentação), no *Bastidor*;

Cálculo de consumo de corrente da fonte:

Cada fonte possui uma especificação de corrente máxima utilizada. Durante a configuração das expansões, é possível acompanhar o nível de consumo utilizado pelos módulos inseridos no projeto.

Para exibir a janela de cálculo de consumo de corrente, siga os seguintes passos:

1. Após inserir um bastidor qualquer, clique com o botão direito do mouse sobre o *Bastidor* ou a *Tabela de Expansões;*

2. Clique sobre a opção "Consumo...";

3. Caso nenhuma fonte tenha sido escolhida, os campos permanecerão em branco; Adicionando-se uma fonte ao projeto, suas especificações da disponibilidade de corrente serão utilizadas como limite máximo para o projeto. Dessa maneira, ao ultrapassar esse limite, um alarme será acionado, mostrando na janela "*Utilização da Fonte*" onde foi excedido o limite de consumo.

Inserindo uma CPU no Projeto

Para inserir uma CPU, siga os seguintes passos:

1. Na guia "Expansões" da Configuração de Hardware, clique no botão Configurar;

- 2. Na Árvore de Expansões, abra a opção "CPU";
- 3. Dentre as opções disponíveis, escolha a CPU que deseja inserir;
- **4.** Para inseri-la no bastidor, existem 3 maneiras:

1.1- Selecione, na *Tabela de Expansões,* a linha correspondente ao último slot do primeiro bastidor. Este slot é reservado exclusivamente para uso da CPU;
1.2- Dê um duplo-clique sobre a CPU selecionada na *Árvore de Expansões*;

2.1- Clique e arraste a CPU selecionada na *Árvore de Expansões,* para a linha correspondente ao último slot do primeiro bastidor, na *Tabela de Expansões;* (reservado exclusivamente para uso da CPU),

3.1- Clique e arraste a CPU selecionada na *Árvore de Expansões,* para o último slot do primeiro bastidor (reservado exclusivamente para uso da CPU), no *Bastidor*,

Para acessar as configurações da CPU, utilize um dos procedimentos mostrados abaixo:

No *Bastidor,* dê um duplo-clique sobre a imagem da CPU previamente inserida no projeto; Na *Tabela de Expansões,* dê um duplo-clique sobre a linha correspondente à CPU; Clique com o botão direito no mouse sobre o *Bastidor* ou a *Tabela de Expansões* (sobre a CPU) e selecione a opção "*Propriedades*";

Configurando uma CPU:

As entradas/saídas das CPU's dos drivers MPC4004R e MPC4004T tem seus respectivos endereços configuráveis para atualizar dentro do programa de Int1 e/ou Int2. Para fazer isso basta marcar as opções correspondentes na janela de configuração de pontos digitais.

Inserindo uma IHM no Projeto

Durante a configuração das expansões do projeto, a IHM é utilizada para realizar o cálculo de consumo de corrente. Dependendo da IHM selecionada para o projeto, a corrente consumida pode mudar. A IHM é representada na configuração das expansões, pela figura abaixo:

Para inserir uma IHM, siga os seguintes passos:

1. Na guia "Expansões" da Configuração de Hardware, clique no botão Configurar;

2. Na Árvore de Expansões, abra a opção "IHM";

3. Escolha o modelo de IHM dentre as opções disponíveis;

IHM Atos	Opção do WinSUP 2
2002.95/M, 2002.96, 2002P96 e 4004.90	LCD 2x20 com campos livres
2002.97/M, 4004.92, 4004G92, 4004P92, 4004.94 e 4004.95	LCD 4x20 com campos livres
4004.98 e 4004.99	VFD 4x20 com campos livres

4. Para inseri-la no projeto, existem 2 maneiras:

1- Dê um duplo-clique sobre a IHM selecionada na Árvore de Expansões;

2- Clique e arraste a IHM selecionada na Árvore de Expansões, para o Bastidor ou a Tabela de Expansões;

Observação: A configuração da IHM é feita através da guia "IHM" da janela Configuração de Hardware.

Módulos Digitais

Entradas Digitais

Os módulos de entradas digitais detectam e convertem sinais de comutação de entrada em níveis lógicos de tensão no controlador programável. Essas entradas poderão ser botoeiras, chaves limite, sensores de proximidade ou qualquer outro dispositivo capaz de comutar tensão 24Vcc, 110 Vca ou 220 Vca.

Cada entrada é isolada do sistema através de um acoplador ótico sendo seu estado "ON" sinalizado através de LED's no frontal do módulo. Podem-se ter módulos de 8, 16 ou 32 entradas, num total máximo de 496.

Saídas Digitais

Os módulos de saídas digitais convertem sinais lógicos usados no controlador programável em saídas (corrente contínua – 24 Vcc ou alternada – relés ou triac), capazes de energizar bobinas, relés, chaves contatoras, lâmpadas, solenóides ou qualquer outra carga.

As saídas são isoladas do sistema através de acopladores óticos, sendo a indicação de saída ativada através de LED's no frontal do módulo. Podem-se ter módulos de 8 ou 16 saídas, num total máximo de 496.

Multiplex

O módulo **4004.70** oferece os drivers para ligar externamente os 32 botões e/ou 32 LED's. Estes Botões e/ou LED's são relacionados aos estados internos através do aplicativo WinSUP 2. *Importante:* - máximo de 1 módulo por bastidor.

A seguir é mostrado o esquema de ligação dos Botões e LED's:

Módulos com Troca a Quente

A troca a quente consiste na substituição de módulos de I/O digital, que eventualmente apresentaram falhas em suas entradas ou saídas sem que o CLP tenha de ser desligado ou reiniciado, evitando que o processo sofra interrupção.

Nesta situação, a CPU da série MPC4004T, que suporta os módulos de troca a quente, permanece energizada controlando o restante do processo, durante a troca do referido módulo.

Os pontos controlados durante a substituição permanecem inativos, com a opção da memorização do último evento das entradas digitais.

<u>OBSERVAÇÃO</u>: Somente as CPU's da série **MPC4004T** permitem realizar troca a quente de seus módulos.

Como funciona a troca a quente

Durante a troca a quente, a CPU identifica a ausência do módulo deixando de atualizá-lo. O comportamento das entradas e saídas durante a troca a quente é descrito a seguir:

Saídas: Enquanto o módulo está ausente do bastidor, a CPU pára de atualizar as saídas digitais, retornando automaticamente a atualizá-las no momento que o módulo é reposto.

Entradas: A CPU para de monitorar as entradas digitais enquanto o módulo está ausente do bastidor. Nesse momento há duas opções que o usuário pode configurar no momento da programação do hardware no aplicativo WinSUP 2:

- **Desligar** as entradas em troca a quente;
- **Memorizar** entradas em troca a quente;

Importante: Quando a opção "Memorizar entradas em troca a quente" é utilizada, deve-se manter os conectores de entrada da placa durante o processo de retirada do módulo para que o último estado das entradas seja corretamente memorizado.

A seleção destas opções é feita nas propriedades da placa no aplicativo WinSUP 2, como mostrado em vermelho na figura ao lado:

O usuário pode optar por definir um El para informar quando a placa de troca a quente está ausente do módulo. Esta opção é habilitada nesta mesma janela, como mostrado em azul.

Ao habilitar esta opção, o campo para inserir o endereço do El de ausência de placa é habilitado.

Uma vez definido o estado interno utilizado, o mesmo poderá ser utilizado no ladder (programação das telas de alarme da IHM, por exemplo) para sinalizar o evento de troca a quente durante o processo.

Definição do El de ausência de placa

Configura pontos digit	ais X
Entradas	Saidas
Endereço inicial	Endereço inicial
0110	0190
Último endereço	Último endereço
011F	019F
🔲 Atualizar na INT 1	🥅 Atualizar na INT 1
🔲 Atualizar na INT 2	🔲 Atualizar na INT 2
Desligar entradas e	em troca quente
O Memorizar entradas	s em troca quente
🗖 Hab. El de ausênc	ia de placa 00FF
<u>0</u>	K <u>C</u> ancelar

Procedimento de troca do módulo

1. Remova os conectores de saída do módulo.

Esta operação é importante pois remove a alimentação aplicada aos atuadores, tornando o processo de troca mais seguro.

Importante: É necessário que a alimentação das saídas do lado do campo (conectores) seja removida antes da retirada e inserção do módulo no bastidor.

2. Retirar o módulo do bastidor (ver figura abaixo);

3. Antes de inserir o novo módulo, verificar a compatibilidade de endereçamento dos jumpers ST1 e STG com o módulo retirado, pois devem ser iguais. (ver procedimento abaixo);

<u>ATENÇÃO</u>: O recurso de troca a quente deve ser utilizado com total cuidado e atenção por parte do usuário. A configuração de jumpeamento do novo módulo <u>DEVE</u> ser igual a da placa que foi substituída. O endereçamento errado pode causar danos ao controlador e à máquina / processo controlado. A ATOS se isenta de qualquer responsabilidade sobre danos causados pelo uso indevido deste recurso.

4. Inserir o novo módulo no bastidor (ver figura abaixo);

Importante: Quando a opção "Memorizar entradas em troca a quente" é utilizada, antes de inserir o novo módulo no bastidor, certifique-se de que os conectores das entradas já foram conectados no módulo, garantindo o status das entradas quando a placa for energizada pelo CLP.

5. Colocar os conectores do módulo (ver procedimento abaixo).

Endereçamento das Expansões Digitais

Os drivers MPC4004R e MPC4004T permitem ao usuário definir até 15 expansões digitais, além dos pontos digitais presentes no Módulo de Processamento.

As posições dos jumpers de endereçamento (ST1) e de grupo (STG*) são fornecidas pelo aplicativo WinSUP 2, durante a configuração do hardware a ser utilizado.

JUMPER	POSIÇÃO	FUNÇÃO
STG*	A	PRIMEIRO GRUPO DE EXPANSÕES (1 ^{ª.} a 7 ^ª . EXPANSÃO)
	В	SEGUNDO GRUPO DE EXPANSÕES (8ª. a 15ª. EXPANSÃO)

JUMPER	POSIÇÃO	FUNÇÃO
	A	INVÁLIDO PARA O GRUPO 1 E 8ª. EXPANSÃO DO GRUPO 2
	В	1 ^ª . EXPANSÃO DO GRUPO 1 OU 9 ^ª . EXPANSÃO DO GRUPO 2
	С	2 ^ª . EXPANSÃO DO GRUPO 1 OU 10 ^ª . EXPANSÃO DO GRUPO 2
874	D	3 ^a . EXPANSÃO DO GRUPO 1 OU 11 ^a . EXPANSÃO DO GRUPO 2
511	E	4 ^ª . EXPANSÃO DO GRUPO 1 OU 12 ^ª . EXPANSÃO DO GRUPO 2
	F	5 ^a . EXPANSÃO DO GRUPO 1 OU 13 ^a . EXPANSÃO DO GRUPO 2
	G	6 ^ª . EXPANSÃO DO GRUPO 1 OU 14 ^ª . EXPANSÃO DO GRUPO 2
	Н	7 ^ª . EXPANSÃO DO GRUPO 1 OU 15 ^ª . EXPANSÃO DO GRUPO 2

Importante: * Quando o módulo de expansão não possuir o jumper de grupo STG, somente o jumper ST1 deverá ser configurado (para maiores detalhes ver página 35).

Utilizando o Aplicativo WinSUP 2

Para inserir uma placa digital, siga os seguintes passos:

1. Na guia "Expansões" da Configuração de Hardware, clique no botão Configurar;

Na Árvore de Expansões, abra a opção "Digitais";

3. Escolha o modelo de placa dentre as opções disponíveis (exemplo: 8E/8S = placa de 8 entradas e 8 saídas):

4. Dentre as opções disponíveis, escolha a placa que possui a especificação necessária para seu projeto;

5. Para inseri-la em uma posição livre do bastidor, existem 3 maneiras:

1.1- Selecione, na *Tabela de Expansões*, a linha correspondente ao slot que deseja preencher;

1.2- Dê um duplo - clique sobre o módulo digital selecionado na Árvore de Expansões;

2.1- Clique e arraste o módulo digital selecionado na Árvore de Expansões, para a linha correspondente ao slot que deseja preencher, na Tabela de Expansões:

3.1- Clique e arraste o módulo digital selecionado na Árvore de Expansões, para o slot desejado no Bastidor:

Fig. 57. - Inserindo módulo digital

Para acessar as configurações de uma placa digital, utilize um dos procedimentos mostrados abaixo:

No *Bastidor* dê um duplo - clique sobre a imagem da placa digital que deseja configurar;

Na *Tabela de Expansões* dê um duplo - clique sobre a linha correspondente à placa digital que deseja configurar;

Clique com o botão direito do mouse sobre o *Bastidor* ou a *Tabela de Expansões* (na placa que deseja configurar) e selecione a opção "*Propriedades*";

Configurando uma placa digital:

As placas digitais têm seus endereços de entradas e saídas configuráveis. Essa configuração é feita nos campos "*Endereço Inicial*", presentes na janela de configuração;

Os pontos digitais (tanto de entradas como de saídas) podem ser atualizados dentro do programa de Int1 e/ou Int2. Para fazer isso basta marcar as opções correspondentes na janela de configuração de pontos digitais.

Observação: é permitida até, no máximo, uma placa por interrupção (além das E/S da CPU). Dessa forma, se escolhermos atualizar as entradas de uma placa de 16E/16S na Int1, ao configurar as outras placas digitais do projeto, a opção "*Atualizar na Int1*" das entradas das outras placas ficará desabilitada, mas podendo ainda utilizar as outras opções disponíveis. Abaixo, a visualização da configuração de uma placa 16E/16S:

Fig. 58.- Configura pontos digitais

Para acessar as configurações da placa Multiplex, utilize um dos procedimentos mostrados abaixo:

- No Bastidor dê um duplo clique sobre a imagem da placa Multiplex;
- Na Tabela de Expansões dê um duplo clique sobre a linha correspondente à placa Multiplex;
- Clique com o botão direito no mouse sobre o Bastidor ou a Tabela de Expansões (na placa Multiplex) e selecione a opção "Propriedades";

Na janela "Configuração do Multiplex", defina o número de botões e LED's da placa e seus respectivos El's iniciais. Clique em "**OK**" para confirmar a configuração.

Módulos Analógicos

Módulos Analógicos (Mistos)

As expansões analógicas convertem até 32 sinais de entrada e 32 sinais de saída analógicas.

Endereçamento das Expansões Analógicas

Os drivers MPC4004R e MPC4004T permitem ao usuário definir até 08 Módulos de Entradas/Saídas Analógicas (mistos).

A posição do jumper de endereçamento (**ST2**) é fornecida pelo aplicativo WinSUP 2, durante a configuração do hardware a ser utilizado.

JUMPER	POSIÇÃO	FUNÇÃO
	A	1 ^ª . EXPANSÃO ANALÓGICA
	В	2ª. EXPANSÃO ANALÓGICA
	С	3 ^ª . EXPANSÃO ANALÓGICA
672	D	4 ^ª . EXPANSÃO ANALÓGICA
512	E	5 ^ª . EXPANSÃO ANALÓGICA
	F	6 ^ª . EXPANSÃO ANALÓGICA
	G	7 ^ª . EXPANSÃO ANALÓGICA
	Н	8 ^ª . EXPANSÃO ANALÓGICA

Módulo Analógico Compacto (MAC)

As expansões analógicas convertem até 120 sinais de Entrada ou 120 sinais de saída analógicas.

Endereçamento das Entradas e Saídas Analógicas Compactas (MAC)

Os drivers MPC4004R e MPC4004T permitem ao usuário definir até 15 Módulos de Analógicas Compactas.

As posições dos jumpers de endereçamento (**ST1**) e de grupo (**STG***) são fornecidas pelo aplicativo WinSUP 2, durante a configuração do hardware a ser utilizado.

JUMPER	POSIÇÃO	FUNÇÃO
OTO *	A	SEGUNDO GRUPO DE EXPANSÕES (8ª. a 15ª. EXPANSÃO)
516 "	В	PRIMEIRO GRUPO DE EXPANSÕES (1 ^{a.} a 7 ^a . EXPANSÃO)

JUMPER	POSIÇÃO	FUNÇÃO
	A	1ª. EXPANSÃO DO GRUPO 1 E INVÁLIDO PARA O GRUPO 2
	В	2ª. EXPANSÃO DO GRUPO 1 OU 9ª. EXPANSÃO DO GRUPO 2
	С	3ª. EXPANSÃO DO GRUPO 1 OU 10ª. EXPANSÃO DO GRUPO 2
074	D	4 ^a . EXPANSÃO DO GRUPO 1 OU 11 ^a . EXPANSÃO DO GRUPO 2
511	E	5ª. EXPANSÃO DO GRUPO 1 OU 12ª. EXPANSÃO DO GRUPO 2
	F	6ª. EXPANSÃO DO GRUPO 1 OU 13ª. EXPANSÃO DO GRUPO 2
	G	7 ^a . EXPANSÃO DO GRUPO 1 OU 14 ^a . EXPANSÃO DO GRUPO 2
	Н	8 ^a . EXPANSÃO DO GRUPO 1 OU 15 ^a . EXPANSÃO DO GRUPO 2

Importante: * Quando o módulo de expansão **não possuir** o jumper de grupo **STG**, **somente** o jumper **ST1** deverá ser configurado (para maiores detalhes ver página 35).

Utilizando o Aplicativo WinSUP 2

Para inserir uma placa analógica, siga os seguintes passos:

1. Na guia "Expansões" da Configuração de Hardware, clique no botão Configurar;

2. Na Árvore de Expansões, abra a opção "Analógicas";

3. Escolha o modelo de placa dentre as opções disponíveis (exemplo: 2E/2S = placa de 2 entradas e 2 saídas);

4. Dentre as opções disponíveis, escolha a placa que possui a especificação necessária para seu projeto;

5. Para inseri-la em uma posição livre do bastidor, existem 3 maneiras:

1.1- Selecione, na *Tabela de Expansões,* a linha correspondente ao slot que deseja preencher; **1.2-** Dê um duplo - clique sobre o módulo analógico selecionado na *Árvore de Expansões*;

2.1- Clique e arraste o módulo analógico selecionado na *Árvore de Expansões,* para a linha correspondente ao slot que se deseja preencher, na *Tabela de Expansões;*

3.1- Clique e arraste o módulo analógico selecionado na *Árvore de Expansões,* para o slot desejado no *Bastidor*;

Para acessar as configurações de uma placa analógica, utilize um dos procedimentos mostrados abaixo:

No Bastidor dê um duplo - clique sobre a imagem da placa analógica que se deseja configurar;

Na *Tabela de Expansões* dê um duplo - clique sobre a linha correspondente à placa analógica que se deseja configurar;

Clique com o botão direito do mouse sobre o *Bastidor* ou a *Tabela de Expansões* (na placa que se deseja configurar) e selecione a opção "*Propriedades*";

A configuração das expansões do WinSUP 2 é feita em formato de tabela, abaixo segue o procedimento para configurar cada opção disponível.

Habilitando um canal analógico na varredura:

Na coluna "Hab. varr." dê um clique sobre a célula correspondente ao canal que se deseja habilitar;

Habilitando um canal analógico na Int1:

Na coluna "Hab. Int1." dê um clique sobre a célula correspondente ao canal que se deseja habilitar;

Habilitando um canal analógico na Int2:

Na coluna "*Hab. Int1*." dê um clique sobre a célula correspondente ao canal que se deseja habilitar; **<u>Observação:</u>** Os canais analógicos são habilitados individualmente, podendo ser atualizados separadamente durante a varredura, ao entrar no programa de Int1 ou de Int2.

Definindo o efetivo a ser utilizado por cada canal:

1. Na coluna "*Efetivo*" dê um clique sobre a célula correspondente ao canal que se deseja utilizar;

2. Insira o endereço onde a placa deverá armazenar o efetivo do canal correspondente;

Observação: Cada canal pode ter seu efetivo programado em um endereço diferente, ou seja, a definição desse endereço é feita individualmente, para cada canal existente na placa.

Definindo o tipo de valor a ser utilizado:

- **1.** Na coluna "*Tipo*" dê um clique sobre a célula correspondente ao canal que se deseja utilizar;
- Uma caixa de seleção se abrirá. Escolha uma das duas opções disponíveis (BCD para decimal e BIN para hexadecimal);

Observação: Cada canal pode possuir um tipo de valor diferente. **Padrão**: BCD.

Definindo a escala a ser utilizada:

- **1.** Na coluna "*Escala*" dê um clique sobre a célula correspondente ao canal que se deseja utilizar;
- 2. Uma caixa de seleção se abrirá. Escolha uma das opções disponíveis para escala;

Observação: Cada canal possui sua própria escala. Padrão: 0000 - 4000.

Exemplo de utilização das escalas:

É possível determinar o fundo de escala mais adequado à aplicação, escolhendo a escala a ser aplicada, segundo as tabelas mostradas a seguir:

Entrada Analógica			
Escala (BCD)	Escala (Binário)		
0000 - 0500	0000 - 01F4		
0000 - 0700	0000 - 02BC		
0000 - 1000	0000 - 03E8		
0000 - 2000	0000 - 07D0		
0000 - 4000	0000 - 0FA0		
0000 - 5000	0000 - 1388		
0000 - 7000	0000 - 1B58		
0000 - 9999	0000 - 270F		

Saída Analógica			
Escala (BCD) Escala (Binário)			
0000 - 9999	0000 - 270F		
0000 - 5000	0000 - 1388		
0000 - 4000	0000 - 0FA0		
0000 - 2000	0000 - 07D0		
0000 - 1000	0000 - 03E8		

Definindo os El's das placas analógicas bipolares (somente 4004.60N e 4004.61N):

Nas placas analógicas bipolares, os canais de saída utilizam um El para definição de sinal. Esse El é definido na coluna "*El Sinal*" e determina se o valor colocado nos respectivos registros de cada saída corresponderá a uma tensão entre 0 a +10Vcc (se o El de sinal estiver OFF), ou uma tensão entre 0 e - 10Vcc (se o El de sinal estiver ON);

Exemplo de utilização do El de sinal:

Escala	40	00	0000 EI = ON EI = OFF		EI = OFF	40	00	
Tensão	-10\	/cc		0V	cc		+10\	/cc

Observação: Cada canal possui seu próprio El.

IMPORTANTE

O Estado Interno das analógicas bipolares <u>somente</u> deve ser programado no WinSUP 2 se a placa estiver jumpeada como bipolar.

• Módulos de Temperatura

Os módulos que fazem a leitura de temperatura convertem e linearizam tensões provenientes de até 64 termopares tipo J, tipo K ou termoresistência do tipo PT100.

Importante: Utilizando o driver MPC4004R, o usuário pode configurar até 32 canais com o PID de temperatura automático através do WinSUP 2. Caso queira ter o controle de mais canais, pode-se utilizar a **Instrução PID** (Ver manual DWARE) ou **PID_I** (Ver manual específico PID padrão ISA). Para ter acesso aos manuais consulte o site <u>www.atos.com.br</u> opção "Downloads".

Pode-se também criar telas de edição para os parâmetros PID, utilizando o mapeamento de memória dos parâmetros PID que é definido pelo WinSUP 2.

Para visualizar os endereços dos parâmetros PID, é necessário acessar Referência Cruzada no ambiente do Winsup, para isto basta pressionar as teclas SHIFT+F3, Expansões, Temperatura, 4T ou 8T e SlotX, Canal e Endereços PID. Esta ação funciona para os Drivers R e T.

Exemplo:

Fig. 59.- Endereços dos Parâmetros PID.

Mais informações sobre configurações PID consulte o APÊNDICE-E deste manual.

Utilizando o driver MPC4004T, o controle PID é feito pela instrução **PID_I** no ladder do equipamento, podendo ser inseridos até 64 blocos **PID_I**.

Para mais informações consulte o manual PID padrão ISA no site www.atos.com.br .

Módulo 4004.85 (PT100 a 3 fios)

O módulo 4004.85 possui:

- 04 canais de entradas analógicas (0 a 10Vcc ou 0 a 20 mA)
- 04 canais de leitura para termoresistência do tipo PT100 (0 a 200 °C)

Endereçamento das Expansões de Temperatura

Os drivers MPC4004R e MPC4004T permitem ao usuário definir até 08 Módulos de Temperatura. A posição do jumper de endereçamento (**ST2**) é fornecida pelo aplicativo WinSUP 2, durante a configuração do hardware a ser utilizado.

JUMPER	POSIÇÃO	FUNÇÃO
	Α	1 ^ª . EXPANSÃO DE TEMPERATURA
	В	2 ^ª . EXPANSÃO DE TEMPERATURA
	С	3 ^ª . EXPANSÃO DE TEMPERATURA
672	D	4 ^ª . EXPANSÃO DE TEMPERATURA
512	E	5 ^ª . EXPANSÃO DE TEMPERATURA
	F	6 ^ª . EXPANSÃO DE TEMPERATURA
	G	7 ^ª . EXPANSÃO DE TEMPERATURA
	Н	8 ^ª . EXPANSÃO DE TEMPERATURA

Importante: Para o módulo 4004.85, é permitido somente **uma** placa por bastidor, tendo sua posição de endereçamento fixa em **ST2- F**.

Utilizando o Aplicativo WinSUP 2

Para inserir uma placa de temperatura, siga os seguintes passos:

1. Na guia "Expansões" da Configuração de Hardware, clique no botão Configurar;

2. Na Árvore de Expansões, abra a opção "Temperatura";

3. Escolha o tipo de placa dentre as opções disponíveis (Termopar ou PT100);

4. Dentre as opções disponíveis, escolha a placa que deseja inserir;

5. Para inseri-la em uma posição livre do bastidor, existem 3 maneiras:

1.1- Selecione, na *Tabela de Expansões,* a linha correspondente ao slot que deseja preencher; **1.2-** Dê um duplo-clique sobre o módulo de temperatura selecionado na *Árvore de Expansões*;

2.1- Clique e arraste o módulo de temperatura selecionado na *Árvore de Expansões,* para a linha correspondente ao slot que se deseja preencher, na *Tabela de Expansões;*

3.1- Clique e arraste o módulo de temperatura selecionado na *Árvore de Expansões,* para o slot desejado no *Bastidor*;

Importante: Os módulos de temperatura devem estar do lado oposto da fonte de alimentação para evitar interferência em seus canais.

Para acessar as configurações de uma placa de temperatura, utilize um dos procedimentos mostrados abaixo:

No Bastidor dê um duplo-clique sobre a imagem da placa de temperatura que se deseja configurar;

Na *Tabela de Expansões* dê um duplo-clique sobre a linha correspondente à placa de temperatura que se deseja configurar;

Clique com o botão direito do mouse sobre o *Bastidor* ou a *Tabela de Expansões* (na placa que se deseja configurar) e selecione a opção "*Propriedades*";

A configuração das expansões do WinSUP 2 é feita em formato de tabela, abaixo segue o procedimento para configurar cada opção disponível.

Habilitação dos canais de temperatura:

Na coluna "Hab.canal" dê um clique sobre a célula correspondente ao canal que se deseja habilitar;

Na coluna "*Efetivo*" defina qual registro livre será utilizado como efetivo de temperatura para cada canal, individualmente;

Observação: Cada canal pode ser habilitado individualmente. Somente os canais habilitados serão atualizados durante a varredura.

Contadores Rápidos

Os módulos de expansão de contagem rápida **4004.87** e **4004.87SA** destinam-se para medições de posicionamentos possibilitando a contagem de **-8.388.608** a **+8.388.608** pulsos à freqüência máxima de 100 kHz.

Importante: É permitida somente uma placa de contagem rápida por bastidor.

Estes módulos possuem dois canais independentes que devem receber como sinal de entrada transdutores de posição incrementais, lineares ou angulares, com sinais de onda quadrada defasados de 90° (A, B e seus complementares) para detecção de sentido e um sinal de referência (Z e seu complementar). Opcionalmente o sinal B (e seu complementar) pode ser eliminado para uso onde não há necessidade de detecção de sentido.

<u>Observação</u>: Os dispositivos com sinais A e A ,B e B , Z e Z , também recebem o nome de sinais "driver de linha"

Possuem também uma saída física para cada canal configurável para tipo "P" ou "N" (ver pág. 34). Esta saída mantém o status de comparação entre o setpoint de contagem e o valor efetivo, sendo possível configurar se a mesma irá acionar quando o efetivo for maior que o setpoint ou o contrário (ver estados 00E4 e 00EC).

Também possui uma entrada de bloqueio de contagem para cada canal, configurável para tipo "P" ou "N" (ver pág. 34)

Os módulos possuem contagem bidirecional (contagem de pulsos em ambos os sentidos), com os seguintes recursos :

- Zerar a contagem através de estado interno de RESET (independente do sinal de referência), impede que o contador seja zerado pelo pulso de zero através do estado interno DESABILITA ZERO EXTERNO.
- Carregar um valor inicial para contagem através de estado interno de LOAD VALOR INICIAL.
- Bloquear a contagem através de estado interno de BLOQUEIO.
- Habilitar a saída física de comparação através de estado interno HABILITA SAÍDA.

Todos estes estados internos mencionados são individuais por canal e ativados no programa de usuário.

Para estes módulos existem ainda os estados internos de comparação ($\geq e <$) entre um valor de setpoint e o valor efetivo do contador, além do estado interno relativo ao sinal de referência do transdutor de posição (zero elétrico).

Todos estes estados internos são de leitura para o programa de usuário e também individuais por canal.

A cada pulso amostrado um registro de contagem é incrementado ou decrementado e uma comparação é executada com um valor de setpoint pré-definido pelo usuário. O resultado da comparação é deixado em disponibilidade através de estados internos específicos que podem ser usados no programa de usuário. Se fisicamente houver o sinal de referência, na borda de ocorrência haverá a zeragem incondicional do registro de contagem (se o estado interno de DESABILITA ZERO EXTERNO não estiver habilitado) e também será sinalizado através de um estado interno específico. O resultado da comparação também é colocado em uma saída física programável pelo usuário (\geq , <) efetivo maior/igual setpoint ou efetivo menor que setpoint. Esta programação é feita através do estado interno "HABILITA SAÍDA EFETIVO \geq SETPOINT".

O módulo de expansão de contagem rápida **4004.87SA** possui além de todas as características descritas acima, uma saída analógica por canal de contagem. A saída varia de -10 Vcc a +10 Vcc.

O valor da saída será dado pelo setpoint colocado nos registros de saída analógica associada ao Contador Rápido 1 (04EC/04ED) e Contador Rápido 2 (04FC/04FD), este valor varia entre 0 e 2000, sendo que o estado interno de SINAL DA SAÍDA ANALÓGICA (03FA para Contador 1 e 03FB para Contador 2) definirá se o valor é positivo ou negativo.

Importante: Ao configurar o Módulo de Contagem Rápida (**4004.87** ou **4004.87SA**) *não é permitida* a utilização simultânea com a segunda placa (canais 9 a 16) dos Módulos de Temperatura (**4004.65** ou **4004.66**).

Mapeamento de Memória

ESTADOS INTERNOS RELACIONADOS					
03FD	EI DE SENTIDO DO CONTADOR RÁPIDO 2	(2)			
03FC	EI DE SENTIDO DO CONTADOR RÁPIDO 1	(2)			
03FB	EI DE SINAL DA SAÍDA ANALÓGICA DO CONTADOR RÁPIDO 2	(1)			
03FA	EI DE SINAL DA SAÍDA ANALÓGICA DO CONTADOR RÁPIDO 1	(1)			
00EF	POSIÇÃO ZERO CONTADOR RÁPIDO 2		(2)		
00EE	EFETIVO < SETPOINT CONTADOR RÁPIDO 2		(2)		
00ED	EFETIVO ≥ SETPOINT CONTADOR RÁPIDO 2		(2)		
00EC	LIGA SAÍDA QUANDO EFETIVO ≥ SETPOINT CONTADOR RÁPIDO 2	(1)			
00EB	HABILITA SAÍDAS CONTADOR RÁPIDO 2	(1)			
00EA	BLOQUEIO DE CONTAGEM DO CONTADOR RÁPIDO 2	(1)			
00E9	LOAD SETPOINT INICIAL CONTADOR RÁPIDO 2	(1)			
00E8	RESET EFETIVO CONTADOR RÁPIDO 2	(1)			
00E7	POSIÇÃO ZERO CONTADOR RÁPIDO 1		(2)		
00E6	EFETIVO < SETPOINT CONTADOR RÁPIDO 1		(2)		
00E5	EFETIVO ≥ SETPOINT CONTADOR RÁPIDO 1		(2)		
00E4	LIGA SAÍDA QUANDO EFETIVO ≥ SETPOINT CONTADOR RÁPIDO 1	(1)			
00E3	HABILITA SAÍDAS CONTADOR RÁPIDO 1	(1)			
00E2	BLOQUEIO DE CONTAGEM DO CONTADOR RÁPIDO 1	(1)			
00E1	LOAD SETPOINT INICIAL CONTADOR RÁPIDO 1	(1)			
00E0	RESET EFETIVO CONTADOR RÁPIDO 1	(1)			
00AF	DESABILITA ZERO EXTERNO CONTADOR RÁPIDO 2	(1)			
00AE	DESABILITA ZERO EXTERNO CONTADOR RÁPIDO 1	(1)			

(1) Estados escritos como saída no software de usuário, para uso no software básico.

(2) Estados de leitura apenas pelo software usuário.

REGISTROS A	REGISTROS ASSOCIADOS				
04FF 04FE	RESERVADO				
04FD 04FC	SAÍDA ANALÓGICA ASSOCIADA CONTADOR RÁPIDO 2				
04FB 04F8	VALOR INICIAL CONTADOR RÁPIDO 2				
04F7 04F4	EFETIVO CONTADOR RÁPIDO 2				
04F3 04F0	PRESET CONTADOR RÁPIDO 2				
04EF 04EE	RESERVADO				
04ED 04EC	SAÍDA ANALÓGICA ASSOCIADA CONTADOR RÁPIDO 1				
04EB 04E8	VALOR INICIAL CONTADOR RÁPIDO 1				
04E7 04E4	EFETIVO CONTADOR RÁPIDO 1				
04E3 04E0	PRESET CONTADOR RÁPIDO 1				

Utilizando o Aplicativo WinSUP 2

Para inserir uma placa de contagem rápida, siga os seguintes passos:

1. Na guia "Expansões" da Configuração de Hardware, clique no botão Configurar;

2. Na Árvore de Expansões, abra a opção "Módulos de Contagem Rápida";

3. Dentre as opções disponíveis, escolha a placa que deseja inserir;

4. Para inseri-la em uma posição livre do bastidor, existem 3 maneiras:

1.1- Selecione, na Tabela de Expansões, a linha correspondente ao slot que deseja preencher;

1.2- Dê um duplo-clique sobre o módulo de contagem rápida selecionado na Árvore de *Expansões*;

2.1- Clique e arraste o módulo de contagem rápida selecionado na *Árvore de Expansões,* para a linha correspondente ao slot que se deseja preencher, na *Tabela de Expansões;*

3.1- Clique e arraste o módulo de contagem rápida selecionado na *Árvore de Expansões,* para o slot desejado no *Bastidor*,

Para acessar as configurações de uma placa de contagem rápida, utilize um dos procedimentos mostrados abaixo:

No *Bastidor* dê um duplo-clique sobre a imagem da placa de contagem rápida que se deseja configurar;

Na *Tabela de Expansões* dê um duplo-clique sobre a linha correspondente à placa de contagem rápida que se deseja configurar;

Clique com o botão direito do mouse sobre o *Bastidor* ou a *Tabela de Expansões* (na placa que se deseja configurar) e selecione a opção "*Propriedades*";

Habilitando os contadores:

Para habilitar os dois contadores disponíveis na placa, marque as opções "*Habilita contador 1*" e "*Habilita contador 2*". Cada contador funciona individualmente, ou seja, se somente o contador 1 for utilizado, não é necessário marcar a opção "Habilita contador 2".

Os efetivos dos contadores rápidos 1 e 2 encontram-se nas posições de memória 4E4 e 4F4 respectivamente, como mostra a janela de configuração.

Habilitando as saídas analógicas:

Para habilitar as saídas analógicas presentes no módulo de contagem rápida, marque a opção "Habilita saídas analógicas". Esta opção está presente somente no módulo 4004.87SA.

Os efetivos das saídas analógicas 1 e 2 encontram-se nas posições de memória 4EC e 4FC respectivamente, como mostra a janela de configuração.

Habilitando contagem binária:

Para utilizar os contadores rápidos em modo binário, marque a opção "Contadores em binário".

• Módulo de Energia

<u>ATENÇÃO:</u> Este módulo deverá ser utilizado somente com as unidades de processamento "XA".

A unidade **4004.45** foi idealizada para atender aplicações direcionadas ao controle e análise de parâmetros elétricos trifásicos.

Integrado aos drivers MPC4004R e MPC4004T sobre a forma de um módulo microprocessado, este módulo possibilita aplicações dedicadas ao controle de energia ou aplicações integradas, que também requeiram a monitoração de parâmetros elétricos.

Principais Características:

- * Medição de parâmetros elétricos (para sistemas em Y com neutro):
- * Tensão RMS (valor trifásico e por fase);
- * Corrente RMS (valor trifásico e por fase);
- * Potência Ativa (valor trifásico e por fase);
- * Potência Reativa (valor trifásico e por fase);
- * Potência Aparente (valor trifásico e por fase);
- * Fator de Potência (valor trifásico e por fase);
- * Consumo de Energia Reativa (valor trifásico e por fase);
- * Freqüência (por fase);
- * Detecção de falta de Fase;
- * Detecção de inversão de Fase;
- * Detecção do sentido da Energia.

Fórmulas Relacionadas as Medições:

- S Potência aparente ou potência total VA
- P Potência ativa W
- Q Potência reativa VAr
- I Corrente A

 $\text{COS}\phi$ - fator de potência

Mapeamento de Memória

O módulo de energia 4004.45 utiliza 16 estados internos e 96 registros para trocar informações. Para facilitar a localização dos registros, comece sempre no início de uma página. Visando facilitar o entendimento da programação dos módulos, será mostrado o mapeamento tendo como referências os seguintes ponteiros:

Primeiro Registro – 0600h (poderia ser 0800h, 1000, 2000, etc.)

Primeiro estado interno - 0200h (poderia ser 0250h, 0320, etc.)

Exemplo de mapeamento do módulo 4004.45:

ENDERECO	DESCRIÇÃO	REPRESENTAÇÃO	DIREÇA	40
LIDERLÇO	DESCRIÇÃO	KERKESENTAÇAO	CPU ⇔	4004.45
06BE	RESERVADO			
06BC	KPT3 CTE MULTIP. PARA POTÊNCIA TOTAL FASE 3	X.XXX	\Rightarrow	
06BA	KPT2 CTE MULTIP. PARA POTÊNCIA TOTAL FASE 2	X.XXX	\Rightarrow	
06B8	KPT1 CTE MULTIP. PARA POTÊNCIA TOTAL FASE 1	X.XXX	\Rightarrow	
06B6	KPR3 CTE MULTIP. PARA POTÊNCIA REATIVA FASE 3	X.XXX	\Rightarrow	
06B4	KPR2 CTE MULTIP. PARA POTÊNCIA REATIVA FASE 2	X.XXX	\Rightarrow	
06B2	KPR1 CTE MULTIP. PARA POTÊNCIA REATIVA FASE 1	X.XXX	\Rightarrow	
06B0	KPA3 CTE MULTIP. PARA POTENCIA ATIVA FASE 3	X.XXX	\Rightarrow	
06AE	KPA2 CTE MULTIP. PARA POTENCIA ATIVA FASE 2	X.XXX	\Rightarrow	
06AC	KPA1 CTE MULTIP. PARA POTENCIA ATIVA FASE 1	X.XXX	\Rightarrow	
06AA	KI3 CTE MULTIP. PARA CORRENTE FASE 3	XX.XX	\Rightarrow	
06A8	KI2 CTE MULTIP. PARA CORRENTE FASE 2	XX.XX	\Rightarrow	
06A6	KI1 CTE MULTIP. PARA CORRENTE FASE 1	XX.XX	\Rightarrow	
06A4	KV3 CTE MULTIP. PARA TENSÃO FASE 3	X.XXX	\Rightarrow	
06A2	KV2 CTE MULTIP. PARA TENSÃO FASE 2	X.XXX	\Rightarrow	
06A0	KV1 CTE MULTIP. PARA TENSÃO FASE 1	X.XXX	\Rightarrow	
069E	RESERVADO			
069C	POTÊNCIA TOTAL FASE 3 * KPT3 FASE 3	XXXX	\Leftarrow	
069A	POTÊNCIA TOTAL FASE 2 * KPT3 FASE 2	XXXX	\Leftarrow	
0698	POTÊNCIA TOTAL FASE 1 * KPT3 FASE 1	XXXX	⇒	
0696	POTÊNCIA REATIVA FASE 3 * KPR3 FASE 3	XXXX	\Leftarrow	
0694	POTÊNCIA REATIVA FASE 2 * KPR2 FASE 2	XXXX	⇐	
0692	POTÊNCIA REATIVA FASE 1 * KPR1 FASE 1	XXXX	⇒	
0690	POTÊNCIA ATIVA FASE 3 * KPA3 FASE 3	XXXX	⇐	
068E	POTÊNCIA ATIVA FASE 2 * KPA2 FASE 2	XXXX	⇐	
068C	POTÊNCIA ATIVA FASE 1 * KPA1 FASE 1	XXXX	⇐	
068A	CORRENTE FASE 3 * KI3 FASE 3	XX.XX	⇐	
0688	CORRENTE FASE 2 * KI2 FASE 2	XX.XX	⇐	
0686	CORRENTE FASE 1 * KI1 FASE 1	XX.XX	⇒	
0684	TENSÃO FASE 3 * KV3 FASE 3	XXX.X	⇐	
0682	TENSÃO FASE 2 * KV2 FASE 2	XXX.X	⇐	
0680	TENSÃO FASE 1 * KV1 FASE 1	XXX.X	⇐	
067F	MËDIA DAS COBRENTES	XX XX	<i>–</i>	
067E			-	
067C	MÉDIA FATOR DE POTÊNCIA	XX.XX	⇐	
067B	POTÊNCIA APARENTE TOTAL	XXXXXXXX	⇐	
0678				
0677 0674	POTÊNCIA REATIVA TOTAL	XXXXXXXX	⇒	
0673 0670	POTÊNCIA ATIVA TOTAL	xxxxxxx	⇒	

Capítulo 5 – Características dos Drivers MPC4004R e MPC4004T

ENDEREÇO	DESCRIÇÃO		REPRESENTAÇÃO	DIREÇ CPU ⇔	ÃO 4004.45
066F 0668	ENERGIA TOTAL REATIVA FASES 3,2,1	KWH	XXXXXXXXXX.XXXXX	⇐	
0667 0660	ENERGIA TOTAL ATIVA FASES 3,2,1	KWH	XXXXXXXXXX.XXXXXX	⇐	
065F 0658	ENERGIA REATIVA FASES 3	KWH	XXXXXXXXXX.XXXXXX	⇐	
0657 0650	ENERGIA REATIVA FASES 2	KWH	XXXXXXXXXXXXXXXXXXX	⇐	
064F 0648	ENERGIA REATIVA FASES 1	KWH	XXXXXXXXXX.XXXXXX	⇐	
0647 0640	ENERGIA ATIVA FASES 3	KWH	XXXXXXXXXX.XXXXXX	⇐	
063F 0638	ENERGIA ATIVA FASES 2	KWH	XXXXXXXXXX.XXXXXX	⇐	
0637 0630	ENERGIA ATIVA FASES 1	KWH	XXXXXXXXXXXXXXXXXXX	⇐	
062C	COS φ FASE 3		XX.XX	⇐	
062A	POTÊNCIA APARENTE FASE 3		XXXX	⇐	
0628	POTÊNCIA REATIVA FASE 3		XXXX	⇐	
0626	POTÊNCIA ATIVA FASE 3		XXXX	⇐	
0624	CORRENTE FASE 3		XX.XX	⇐	
0622	FREQUENCIA FASE 3		XX.XX	⇐	
0620	TENSÃO FASE 3		XXX.X	⇐	
061C	COS φ FASE 2		XX.XX	⇒	
061A	POTÊNCIA APARENTE FASE 2		XXXX	⇐	
0618	POTÊNCIA REATIVA FASE 2		XXXX	⇒	
0616	POTÊNCIA ATIVA FASE 2		XXXX	⇐	
0614	CORRENTE FASE 2		XX.XX	⇐	
0612	FREQUENCIA FASE 2		XX.XX	⇒	
0610	TENSÃO FASE 2		XXX.X	⇐	
060C	COS φ FASE 1		XX.XX	⇐	
060A	POTÊNCIA APARENTE FASE 1		XXXX	⇐	
0608	POTÊNCIA REATIVA FASE 1		XXXX	⇐	
0606	POTÊNCIA ATIVA FASE 1		XXXX	⇐	
0604	CORRENTE FASE 1		XX.XX	⇐	
0602	FREQUENCIA FASE 1		XX.XX	⇒	
0600	TENSÃO FASE 1		XXX.X	⇐	

Estados Internos

	DESCRIÇÃO	DIREÇÃO	
ENDEREÇÜ	DESCRIÇÃO	CPU ⇔ 4004.45	
020F	RESERVADO		
020E	ON- LIBERA CÁLCULO DE POTÊNCIAS , CORRENTES E FATOR DE POTÊNCIA	⇒	
020D	ON – LIBERA CÁLCULO DE ENERGIA	\Rightarrow	
020C	ON – ZERA CALCULO DE ENERGIA	\Rightarrow	
020B	RESERVADO		
020A	RESERVADO		
0209	RESERVADO		
0208	RESERVADO		
0207	ON – FALTA DE FASES	¢	
0206	ON – SEQUENCIA DE FASES ERRADAS	⇒	
0205	ON – POTÊNCIA REATIVA FASE 3 POSITIVA	⇒	
0204	ON – POTÊNCIA REATIVA FASE 2 POSITIVA	⇐	
0203	ON – POTÊNCIA REATIVA FASE 1 POSITIVA	⇒	
0202	ON – POTÊNCIA ATIVA FASE 3 POSITIVA	⇒	
0201	ON – POTÊNCIA ATIVA FASE 2 POSITIVA	⇐	
0200	ON – POTÊNCIA ATIVA FASE 1 POSITIVA	⇐	

Endereçamento do Módulo de Energia

Os drivers MPC4004R e MPC4004T permitem ao usuário definir até 08 Módulos de Energia. A posição do jumper de endereçamento (**ST1**) é fornecida pelo aplicativo WinSUP 2, durante a configuração do hardware a ser utilizado.

JUMPER	POSIÇÃO	FUNÇÃO
	A	1 ^ª . EXPANSÃO DE ENERGIA
	В	2ª. EXPANSÃO DE ENERGIA
	С	3 ^ª . EXPANSÃO DE ENERGIA
ST4	D	4 ^a . EXPANSÃO DE ENERGIA
511	E	5 ^a . EXPANSÃO DE ENERGIA
	F	6 ^a . EXPANSÃO DE ENERGIA
	G	7 ^a . EXPANSÃO DE ENERGIA
	Н	8 ^ª . EXPANSÃO DE ENERGIA

Observação: O usuário tem a sua disposição, todas as unidades digitais e analógicas presentes nos drivers MPC4004Re MPC4004T podendo assim incrementar o controle dos processos que envolvem a medição de parâmetros elétricos.

Utilizando o Aplicativo WinSUP 2

Para inserir uma placa Slave, siga os seguintes passos:

- 1. Na guia "Expansões" da *Configuração de Hardware*, clique no botão *Configurar;*
- 2. Na Árvore de Expansões, abra a opção "Slaves";
- 3. Dentre as opções disponíveis, escolha a placa que deseja inserir;

4. Para inseri-la em uma posição livre do bastidor, existem 3 maneiras:

1.1- Selecione, na *Tabela de Expansões,* a linha correspondente ao slot que deseja preencher; **1.2-** Dê um duplo-clique sobre o módulo slave selecionado na *Árvore de Expansões*;

2.1- Clique e arraste o módulo slave selecionado na *Árvore de Expansões,* para a linha correspondente ao slot que deseja preencher, na *Tabela de Expansões;*

3.1- Clique e arraste o módulo slave selecionado na *Árvore de Expansões,* para o slot desejado no *Bastidor*;

Para acessar as configurações de uma placa slave, utilize um dos procedimentos mostrados abaixo:

No Bastidor dê um duplo-clique sobre a imagem da placa slave que se deseja configurar;

Na *Tabela de Expansões* dê um duplo-clique sobre a linha correspondente à placa slave que deseja configurar;

Clique com o botão direito do mouse sobre o *Bastidor* ou a *Tabela de Expansões* (na placa que deseja configurar) e selecione a opção "*Propriedades*";

Configurando o Módulo de Energia:

O módulo de energia 4004.45 utiliza 16 estados internos e 96 registros para trocar informações. Para este módulo, estão disponíveis as definições de um registro inicial e um El inicial para atualização dos parâmetros medidos, bem como a possibilidade de atualizar a slave dentro da Int2.

Definição do registro inicial:

O registro inicial a ser utilizado pela slave é definido no campo "Reg. inicial";

Definição do El inicial:

O El inicial a ser utilizado pela slave é definido no campo "El inicial";

Dica: Para facilitar a localização dos registros, comece sempre no início de uma página.

Visando facilitar o entendimento da programação dos módulos, será mostrado o mapeamento tendo como

referências os seguintes ponteiros:

- Primeiro Registro: 0600h (poderia ser 0800h, 1000h, 2000h, etc.)
- **Primeiro estado interno:** 0200h (poderia ser 0250h, 0320h, etc.) (ver mapeamento da slave de energia)

Atualização na Int2:

Marque a opção "*Habilita a atualização desta slave na Int2*", para que a slave seja atualizada dentro do programa de Int2;

• Módulo Slave de Comunicação

Os módulos slave de comunicação **4004.72R e 4004.72M** são aprimoramentos do módulo 4004.72 pois possui a possibilidade de ser mestre de rede para cada um de seus dois canais. O protocolos suportados são: APR03 da **Atos** (**4004.72R**) e MODBUS RTU (**4004.72M**).

A criação destes módulos de comunicação atende as necessidades das seguintes aplicações:

- Link com rádio modem;
- Link com linhas privativas;
- Link entre CLP's para troca de dados entre CPU's

Características dos Módulos 4004.72R e 4004.72M

CARACTERÍSTICAS TÉCNICAS			
Quantidade de Canais	02 (dois)		
Quantidade de módulos no bastidor	Até 08 módulos, limitado ao consumo dos módulos em relação à fonte do bastidor.		
Taxa de Comunicação	De 1200 bps até 57.600 bps		
Padrão Elétrico	RS232 ou RS485 presente em cada canal e selecionável por jumper interno (ver tabela na página 95)		
Isolação Ótica	1000V		
Indicadores LED	Status do módulo e Status dos canais		
Programação	Diretamente através do WinSUP 2		
Protocolo	4004.72R: APR03 no modo mestre e escravo 4004.72M: MODBUS RTU no modo mestre e escravo		
Consumo	240mA @5Vcc da fonte do bastidor		

MODO DE FUNCIONAMENTO DO LED DE STATUS				
Piscando Rápido	Módulo programado e operando normalmente			
Piscando Lento	Módulo em modo de programação			
Aceso Direto	Módulo não programado			

MODO DE FUNCIONAMENTO DOS LED'S DE FALHA DE COMUNICAÇÃO					
MODO MESTRE					
Aceso Direto	Módulo operando sem falhas				
Piscando Lento	Módulo operando com falha em alguma estação				
MODO ESCRAVO					
Apagado	Quando um canal é escravo seu respectivo LED de falha de comunicação permanece apagado.				

Princípio de Funcionamento

Os módulos **4004.72R e 4004.72M** possuem acesso a todas as posições de memória da CPU, tanto em modo mestre como no modo escravo.

- Quando o canal é configurado como mestre de rede, o módulo atualiza somente os frames declarados pelo usuário.
- Quando o canal é configurado como escravo, o módulo atualiza qualquer posição de memória da CPU.

Importante: os canais só estarão ativos quando o controlador estiver no modo RUN.

Um frame corresponde a uma região a ser atualizada, definindo os endereços a serem atualizados, o endereço de rede, o número de estação e a quantidade de bytes e serem atualizados.

EXEMPLO PARA 4004.72R (SLAVE APR03)

 Exemplo de um frame:
 Nr
 End. CPU
 Sentido
 End. Remota
 End. rede
 Nr. bytes

 1
 0500
 --->
 0700
 1
 8

EXEMPLO PARA 4004.72M (SLAVE MODBUS RTU)

Evenuela de una france.	Nr.	End. CPU	End. Remota	End. rede	Quant, regs.	Função	l
Exemplo de um frame:	1	500	600	1	1	06-Preset Single Register	l

A atualização das informações entre a CPU e o módulo pode ser feita de duas maneiras:

1. Na varredura da CPU: A troca de informações entre a CPU e o módulo ocorrerá uma vez a cada varredura da CPU, sendo atualizado até 8 frames por vez.

Desta forma, se os dois canais são configurados como mestre e possuem por exemplo 16 frames cada um, o tempo para atualizar todos os campos será de 4 varreduras da CPU.

Recomenda-se este modo quando não há variáveis críticas sendo atualizadas.

2. No programa de INT2 (base de tempo): A troca de informações é feita na base de tempo escolhida para a INT2, que pode ser configurada de 2ms até 10ms. Sendo também atualizado até 08 frames por vez.

No mesmo exemplo anterior para 16 frames configurado em cada canal, considerando a melhor resolução de 2ms, o tempo total de atualização será de 8 ms.

Recomenda-se este modo quando há variáveis críticas de processo sendo atualizadas.
Cálculo do Tempo de Atualização dos Dados

Para tornar o software mais modular e otimizado, a comunicação dos dados ocorrem em dois ciclos distintos:

I - Comunicação das informações entre a RAM da CPU e a RAM da slave;

II - Comunicação entre a slave e as estações da rede.

Existe também um frame fixo, que transmite os estados de falha com as estações da rede.

O primeiro ciclo já é conhecido onde sua temporização depende da quantidade de frames criados e também de estarem ou não sendo atualizados na interrupção.

Para o segundo ciclo, dependemos basicamente da taxa de comunicação e do número de bytes transmitidos, assim teríamos:

ΤΑΧΑ	Nº. DE BYTES	TEMPO POR FRAME
57600	8	4,3ms
57600	16	5,8ms
9600	8	28,8ms
9600	16	30,6ms

Exemplos de cálculo do tempo de atualização dos frames

<u>Exemplo 1</u>: Módulo com 1 canal habilitado, possuindo 16 frames com 16 bytes cada, atualizados na interrupção com base de tempo de 2ms, comunicando a taxa de 57600:

Tempo do ciclo I: 2 scans com 8 frames cada + 1 scan fixo de transmissão dos alarmes, totalizando 6ms.

Tempo do ciclo II: 16 frames **x** 5,8ms = 93ms

Portanto o pior caso seria a soma dos dois tempos ou seja os 256 bytes do exemplo estão sendo atualizados a cada 99ms

<u>Exemplo 2</u>: Módulo com 2 canais habilitados possuindo 16 frames com 16 bytes cada, atualizados na interrupção com base de tempo de 2ms, comunicando a taxa de 57600:

Quando houver dois canais ativos, somente o tempo do primeiro ciclo sofrerá aumento, pois a troca de dados com as estações é feita simultaneamente nos dois canais.

Tempo do ciclo I: 2 scans para canal 1 + 2 scans para canal 2 + 1 scan fixo de transmissão dos alarmes dos dois canais, totalizando: $5 \times 2 = 10$ ms.

Tempo do ciclo II: 16 frames **x** 5,8ms = 93ms

Tempo total do canal 1 para trocar 256 bytes = 103ms Tempo total do canal 2 para trocar 256 bytes = 103ms

Utilizando o Aplicativo WinSUP 2

Os módulos **4004.72R e 4004.72M** estão disponíveis para as CPU's dos drivers **MPC4004R** e **MPC4004T**. Após ser inserido no bastidor, estes módulos serão programados segundo as configurações abaixo:

<u> Módulo 4004.72R</u>

MODO ESCRAVO									MODO N	IESTRE					
Pro	priedades					>		Pro	priedades						×
Ca	nal 1 🛛 Canal 2	1						Ca	nal 1 Canal 3	2					
										~				~	
	1odo comunica -	ção	Baud rate	End. inic	ial de falha	Qtde, alarmes			1odo comunica =	ação	Baud rate	End. ini	cial de falha	Utde, alarme	<u>s</u>
() Mestre		157600			32		9	 Mestre 		[37600	■ [0250	(v. 10 - v. v)	121	-11
(Escravo		Endereço de rec	ie limeout	(x IUms)			0	Escravo		Endereço de		t (X IU ms)		
			2												
Nr	End. CPU	Sentido	End. Remota	End. rede	Nr. bytes			Nr	End. CPU	Sentido	End. Remo	ta End. rede	Nr. bytes		
1	FFFF	>	FFFF	1	8			1	440	>	800	1	16		
2	FFFF	>	FFFF	1	8			2	900	<	1200	13	8		
3	FFFF	>	FFFF	1	8			3	300	<	250	22	3		
4	FFFF	>	FFFF	1	8			4	120	>	330	31	4		
5	FFFF	>	FFFF	1	8			5	550	<	60A	2	6		
6	FFFF	>	FFFF	1	8			6	5F0	>	6E0	1	2		
7	FFFF	>	FFFF	1	8			7	022	<	0A0	17	10		
8	FFFF	>	FFFF	1	8			8	FFFF	>	FFFF	1	8		
6		\		1	0		Щ.	٩			CCCC	1	0		<u> </u>
	Habilita a atua	alização na l	Int 2		<u>0</u> K	<u>C</u> ancelar			Habilita a atu	alização na	Int 2		<u>0</u> K	<u>C</u> ancelar	

O módulo **4004.72R** possui 02 canais a serem programados da seguinte maneira:

- Modo de Comunicação: Define se o canal é mestre ou escravo;
- Baud Rate: Define a taxa de comunicação do canal;
- Endereço de Rede: Quando escravo, define o número de identificação do módulo na rede, que o canal irá responder;
- Time-out: Quando mestre, define o tempo de espera de falha entre as estações do canal;
- End. Inicial de Falha: Define os El's da CPU utilizados para indicar as falhas de comunicação das estações de cada canal;
- **Qtde.** Alarmes: Define a quantidade de alarmes a serem atualizados na CPU, a partir do endereço inicial de falha definido no campo anterior;
- Frames de comunicação: 40 frames de comunicação de 16 bytes (configurável) para cada canal;

Quando o canal for configurado para modo escravo, somente a programação do número de estação e taxa de baud rate se faz necessário.

<u>Módulo 4004.72M</u>

M					MODO	MESTR	E			
Propriedades			×	Proprieda	ades					×
Canal 1 Canal 2				Canal 1	Canal 2					
11				'						1
Modo comunicação Baud	trate End. inicia	al de falha - Qtde, alarmes		_ Modo c	omunicação	B	aud rate	End. inicia	al de falha 🛛 Qtde, alarmes	
576	00 🔽 FFFF	31				E	7600	· 300	2	
C Mestre Ende	ereço de rede Timeout (;	к 10 ms)		🔘 🍽 Mes	tre	E	ndereço de red	e Timeout ()	(10 ms)	
1	▼ 5							5		
Escravo Stop	bits Paridade			O Esc	ravo	S	top bits	Paridade		
1	Nenhum	a 🔻				1		 Nenhuma 		
,		_								
Nr. End. CPU End. Remota E	ind. rede Quant. regs.	Função		Nr. End.	CPU E	nd. Remota	End. rede	Quant. regs.	Função	
1 FFFF FFFF 1	8	00-Sem Programa		1 500	60	00	1	4	16-Preset Multiple Registers	
2 FFFF FFFF 1	8	00-Sem Programa		2 600	70	00	2	2	04-Read Input Registers	
3 FFFF FFFF 1	8	00-Sem Programa		3 E000	20	00	1	6	15-Force Multiple Coils	
4 FFFF FFFF 1	8	00-Sem Programa		4 FFFF	FI	FFF	1	8	00-Sem Programa	_
5 FFFF FFFF 1	8	00-Sem Programa		5 FFFF	FI	FFF	1	8	00-Sem Programa	_
6 FFFF FFFF 1	8	00-Sem Programa		6 FFFF	FI	FFF	1	8	00-Sem Programa	_
7 FFFF FFFF 1	8	00-Sem Programa		7 FFFF	FI	FFF	1	8	00-Sem Programa	- 11
8 FFFF FFFF 1	8	00-Sem Programa		8 FFFF	FI	FFF	1	8	00-Sem Programa	
	0	Inn Com Brograma						0	IIII Son Brograma	
🔲 Habilita a atualização na Int 2		<u>O</u> K <u>C</u> ancela	er	🔲 Habili	ta a atualiza	ação na Int	2		<u>O</u> K <u>C</u> ancel	ar

O módulo **4004.72M** possui 02 canais a serem programados da seguinte maneira:

- Modo de Comunicação: Define se o canal é mestre ou escravo;
- Baud Rate: Define a taxa de comunicação do canal;
- Endereço de Rede: Quando escravo, define o número de identificação do módulo na rede, que o canal irá responder;
- Time-out: Quando mestre, define o tempo de espera de falha entre as estações do canal;
- End. Inicial de Falha: Define os El's da CPU utilizados para indicar as falhas de comunicação das estações de cada canal;
- **Qtde. Alarmes:** Define a quantidade de alarmes a serem atualizados na CPU, a partir do endereço inicial de falha definido no campo anterior;
- Stop bits: Define o número de stopbits na configuração do canal;
- Paridade: Define a utilização de paridade para o canal;
- Frames de comunicação: 40 frames de comunicação de 16 bytes (configurável) para cada canal;

Quando o canal for configurado para modo escravo, somente a programação do número de estação e taxa de baud rate se faz necessário.

IMPORTANTE

- A comunicação entre o aplicativo e o módulos 4004.72R / 4004.72M presentes na aplicação (máximo de 8 módulos) será sempre realizada no modo de programação;
- As slaves receberão a programação através do aplicativo, que acessará sua memória e manipulará os bytes de gravação.

Topologia

LINK COM RS485

• Programa de Interrupção 1

Para que o programa de *Int1* seja executado, é necessário antes habilitá-lo em *Configuração de Hardware*.

Uma vez habilitada, o programa *Int1* será executado na transição de OFF para ON da entrada **102** (E3 da CPU).

Quando um programa de interrupção é chamado, a execução do *scan* é interrompida, e o programa de interrupção é executado. Esse procedimento é adotado em situações que exijam do CLP uma ação imediata, independente do ponto do scan em que o CLP está. Tão logo o programa de interrupção é executado, a CPU volta ao ponto em que havia interrompido o *scan*.

Opções do programa de interrupção:

Para tornar mais eficiente a execução do programa Int1, ao habilitá-lo, é possível visualizar as tarefas que irão ser executadas junto à interrupção. Essas tarefas são selecionadas durante a configuração do hardware e programação do ladder no WinSUP 2.

Utilizando o Aplicativo WinSUP 2

Para utilizar esse recurso, selecione a opção "*Habilita programa de interrupção 1*", na guia "Geral" da janela *Configuração de Hardware*, e em seguida acione o botão **Opções**.

A seguinte janela se abrirá:

Opções do programa de interrupção	×
CPU Digitais Analógicas Contador rápido Comparação auto. de registros Movim. dados através El	
KCancel	lar

Fig. 60. - Opções do programa de interrupção 1

Cada opção mostrada na janela acima faz referência a uma opção das configurações de hardware.

CPU - Indica se as entradas/saídas da CPU foram programadas para serem atualizadas na Int1;

Digitais - Indica quais placas foram programadas para atualizar na Int1, mostrando em qual slot a placa se encontra e quais entradas/saídas da placa serão atualizadas;

Analógicas - Indica quais placas foram programadas para atualizar na Int1, mostrando em qual slot a placa se encontra e quais canais foram programados para serem atualizados, informando seus respectivos efetivos;

Contador Rápido - Indica se a placa de contagem rápida está programada para atualizar na Int1, mostrando em qual slot ela se encontra;

Comparação auto. de registros - Indica quais grupos da comparação automática de registros, programada na guia *Geral,* foram programados para atualizar na Int1, mostrando o efetivo, preset, EI e quantidade de cada grupo.

Movim. dados através EI - Indica quais grupos da movimentação de dados através de EI, programada na guia *Geral,* foram programados para atualizar na Int1, mostrando o destino, a origem, o EI e a quantidade de cada grupo.

Observe o exemplo abaixo:

Opções do programa de interrupção	×
	<u> </u>
🦳 🥘 Entradas: 0100 - 0107	
🕘 🥘 Saídas: 0180 - 0187	
🚊 🔂 Digitais	
🖻 📲 16E 16S - Slot A2	
💮 💮 Entradas: 0110 - 011F	
🚊 🗽 🗽 Analógicas	
🖻 💵 4EA 4SA - Slot B2	
🖳 🕘 Canal E1 Efetivo: 5200	
🚊 🔐 Contador rápido	
EXAMP - Slot B3	_
	<u>C</u> ancelar

Fig. 61. - Exemplo de configuração de Int1

CPU - Indica que as entradas e saídas foram programadas e mostra seus respectivos endereços;

Digitais - Indica que a placa 16E/16S, situada no slot A2, tem suas entradas digitais programadas para atualizar na Int1. Seus respectivos endereços são mostrados logo ao lado: 0110h a 011Fh;

Analógicas - Indica que a placa 4E/4S, situada no slot B2, tem o canal 1 programado para atualizar na Int1. Seu respectivo endereço de efetivo está mostrado logo ao lado: 5200h;

Contador Rápido - Indica que a placa de contagem rápida inserida no slot B3 foi programada para atualizar na Int1;

Comparação auto. de registros - Indica quais grupos da comparação automática de registros, programada na guia *Geral,* foram programados para atualizar na Int1, mostrando o efetivo, preset, EI e quantidade de cada grupo.

Movim. dados através EI - Indica quais grupos da movimentação de dados através de EI, programada na guia *Geral,* foram programados para atualizar na Int1, mostrando o destino, a origem, o EI e a quantidade de cada grupo.

• Programa de Interrupção 2

Para que o programa de *Int2* seja executado, é necessário antes habilitá-lo em *Configuração de Hardware*.

Quando um programa de interrupção é chamado, a execução do *scan* é interrompida, e o programa de interrupção é executado. Esse procedimento é adotado em situações que exijam do CLP uma ação imediata, independente do ponto do scan em que o CLP está. Tão logo o programa de interrupção é executado, a CPU volta ao ponto em que havia interrompido o *scan*.

Uma vez habilitada, o programa *Int2* será executado periodicamente, de acordo com o intervalo definido pelo usuário na caixa de seleção *"Intervalo para interrupção"*. Os intervalos possíveis vão de 2 a 10 ms.

Opções do programa de interrupção:

Para tornar mais eficiente a execução do programa Int2, ao habilitá-lo, é possível visualizar as tarefas que irão ser executadas junto à interrupção. Essas tarefas são selecionadas durante a configuração do hardware e programação do ladder no WinSUP 2.

Utilizando o Aplicativo WinSUP 2

Para utilizar esse recurso, selecione a opção "*Habilita programa de interrupção 2*", na guia "Geral" da janela *Configuração de Hardware*, e em seguida acione o botão **Opções**.

A seguinte janela se abrirá:

Opções do programa de interrupção	×I
CPU Digitais Analógicas Contador rápido Slaves Comparação auto. de registros Movim. dados através El	
Intervalo para interrupção 10 ms 💿 🦳 Atualiza 8 primeiros ângulos	
<u> </u>	

Fig. 62. - Opções do programa de interrupção 2

Cada opção mostrada na janela acima faz referência a uma opção das configurações de hardware.

CPU - Indica se as entradas/saídas da CPU foram programadas para serem atualizadas na Int1;

Digitais - Indica quais placas foram programadas para atualizar na Int1, mostrando em qual slot a placa se encontra e quais entradas/saídas da placa serão atualizadas;

Analógicas - Indica quais placas foram programadas para atualizar na Int1, mostrando em qual slot a placa se encontra e quais canais foram programados para serem atualizados, informando seus respectivos efetivos;

Contador Rápido - Indica se a placa de contagem rápida está programada para atualizar na Int1, mostrando em qual slot ela se encontra;

Comparação auto. de registros - Indica quais grupos da comparação automática de registros, programada na guia *Geral,* foram programados para atualizar na Int2, mostrando o efetivo, preset, EI e quantidade de cada grupo.

Movim. dados através EI - Indica quais grupos da movimentação de dados através de EI, programada na guia *Geral,* foram programados para atualizar na Int2, mostrando o destino, a origem, o EI e a quantidade de cada grupo.

Intervalo para interrupção - Tempo de execução do programa de Int2. Possui intervalos entre 2ms e 10ms;

Atualiza 8 primeiros ângulos - No instante que o programa de interrupção é chamado, os 8 primeiros ângulos do contador rápido (CPU) em modo ângulo são atualizados;

Observe o exemplo abaixo:

Fig. 63. - Exemplo de configuração de Int2

CPU - Indica que as entradas e saídas foram programadas e mostra seus respectivos endereços;

Digitais - Indica que a placa 8E/8S, situada no slot A9, tem suas saídas digitais programadas para atualizar na Int2. Seus respectivos endereços são mostrados logo ao lado: 01A0h a 01A7h;

Analógicas - Indica que a placa 4E/4S, situada no slot A3, tem o canal E1 programado para atualizar na Int2. Seu respectivo endereço de efetivo está mostrado logo ao lado: 6000h;

Contador Rápido - Não existe placa de contador rápido, ou ela não está programada para atualizar na Int2, portanto essa opção permanece em branco;

Slaves - Indica que a placa Slave DeviceNet inserida no slot A4 foi programada para atualizar na Int2;

Comparação auto. de registros - Por não existir nenhum grupo programado para atualizar na Int2 ou a opção *"Habilita comparação automática de registros"*, na guia *"Geral"* não estar habilitada, essa opção permanece em branco;

Movim. dados através El - Por não existir nenhum grupo programado para atualizar na Int2 ou a opção *"Habilita movimentação de dados através de EI"*, na guia *"Geral"* não estar habilitada, essa opção permanece em branco;

Canais de Comunicação Serial

A série **MPC4004** possui dois canais de comunicação serial: canal A (RS232) e canal B (RS485). Os dois canais podem ser utilizados simultaneamente, podendo ter as seguintes taxas de comunicação 1200, 2400, 4800, 9600, 19200, 28800 e 57600.

Recursos Disponíveis

Definição das combinações dos recursos disponíveis para os canais de comunicação dos drivers MPC4004R e MPC4004T.

	APR03 Escravo	APR03 Mestre	Modbus Escravo	Modbus Mestre	Instrução Print	Escuta Canal Serial
RS232	SIM	SIM	SIM	SIM	SIM	SIM
RS485	SIM	SIM	SIM	SIM	SIM	SIM

Informações adicionais:

Canal A padrão elétrico RS232

Canal B padrão elétrico RS485 (até 32 elementos conectados em rede) conexão em // (paralelo)

Importante: O Mestre não pode ser simultâneo nos dois canais seriais.

Utilizando o Aplicativo WinSUP 2

A programação da taxa de comunicação dos canais seriais do CLP é feita na guia "**Geral**" da janela *Configurações de Hardware*, nos campos mostrados abaixo:

—Converience ~				
comunicação		APR03	Modbus	Print
ConstA	Baud	57600 💌	57600 💌	57600 💌
RS-232	Paridade	Nenhuma 🔽	Nenhuma 💌	Nenhuma 💌
	Tamanho	8 🔽	8 🔽	8 💌
	Stop bits	1 🔽	1 💌	1 💌
		APR03	Modbus	Print
	Baud	APR03	Modbus	Print 57600 💌
Canal B	Baud Paridade	APR03 57600 💌 Nenhuma 💌	Modbus 57600 V Nenhuma V	Print 57600 💌 Nenhuma 💌
Canal B RS-485	Baud Paridade Tamanho	APR03 57600 Nenhuma 8	Modbus 57600 V Nenhuma V 8 V	Print 57600 V Nenhuma V 8 V
Canal B RS-485	Baud Paridade Tamanho Stop bits	APR03 57600 • Nenhuma • 8 • 1	Modbus 57600 V Nenhuma V 8 V 1 V	Print 57600 V Nenhuma V 8 V 1 V

Fig. 64.- Programação das taxas de comunicação

Aplicações Especiais com o Controlador MPC4004R / MPC4004T

	MPC4004R	MPC4004T	
Comparação Automática de	Sim	Sim	
Movimentação de Dados At	ravés de El	Sim	Sim
Simulador de Ângulo		Sim	Sim
Contodor Dánido	Modo Normal	Sim	Sim
Contador Rapido	Modo Ângulo	Sim	Sim
Temporizadores / Contadore	es de Firmware (1 a 32)	Sim	Sim
Temporizadores de 0,01ms		Sim	Sim
Motor de Passo		Sim	Sim
Envio de Caracteres através	do Canal Serial	Sim	Sim
Leitura de Caracteres atravé	es do Canal Serial	Sim	Sim
Comunicação Background		Sim	Sim
Comparação de Máximos de	Sim	Sim	
Temporizadores / Contadore	Sim	Sim	
Impressão de Dados (TXPR)	Sim	Sim	
Programação On-Line		Não	Sim

Comparação Automática de Registros:

Esse recurso executa a comparação de uma sequência de registros (definidos a partir de um registro qualquer) com uma sequência de outros registros (presets) automaticamente, sem a necessidade de fazer estas comparações no programa ladder.

Cada preset tem um El associado, que sinaliza o resultado da comparação. Assim que o registro escolhido atingir o valor do primeiro preset, o primeiro El sinalizará; quando atingir o valor do segundo preset, o segundo El sinalizará, e assim por diante.

Utilizando o Aplicativo WinSUP 2

Para configurar esse recurso, selecione a opção "*Habilita comparação automática de registros*", na guia "**Geral**" da janela *Configuração de Hardware*, e em seguida acione o botão **Opções**. A seguinte janela será aberta:

Habilita	a compara	ção auton	nática de r	egistros				×
Grupo	Hab. varr.	Hab. Int1	Hab. Int2	Efetivo	Preset	EI	Quantidade	
1								
2								
3								
4								
5								
6								
7								
8								
9								
10								
111 V 7	(050) I	1 (())	1.00.1	200				Ľ
varr. (n 0	nax 256) In 0	ti (max 32)	0	32)		<u>0</u> K	<u>C</u> ancela	r

Fig. 65. - Comparação automática de registros

Definição das colunas

Grupo: Cada grupo representa um efetivo e uma sequência de presets que deseja comparar. O número máximo de grupos é de 64;

Hab. varr.: Habilita grupo na varredura. Quando selecionado, a comparação para este grupo será realizada durante a varredura

Hab. Int1: Habilita grupo da Int1. Quando selecionado, a comparação para este grupo será realizada no programa de Int1.

Hab. Int2: Habilita grupo da Int2. Quando selecionado, a comparação para este grupo será realizada no programa de Int2.

Efetivo: Este é o endereço do registro a ser comparado. Esse endereço pode ser configurado pelo usuário, podendo ser utilizado qualquer registro livre do CLP.

Preset: Este é o endereço do primeiro registro de preset; todos os outros presets do grupo virão em seqüência. Esse endereço pode ser configurado pelo usuário, podendo ser utilizado qualquer registro livre do CLP.

EI: Endereço do primeiro Estado Interno de comparação do grupo. Cada registro de preset está associado a um EI, que sinaliza o resultado da comparação. Essa associação é direta: o primeiro preset está associado ao primeiro EI; o segundo preset ao segundo EI, etc.

Estado Interno OFF = Valor do Preset > Valor do Efetivo

Estado Interno ON = Valor do Preset <= Valor do Efetivo

Este endereço pode ser configurado pelo usuário, podendo ser utilizado qualquer seqüência de El's livres do CLP.

Quantidade: Nesse campo, é definido o número de comparações que serão associados a cada efetivo do grupo. O número máximo de comparações possíveis é de 256 na varredura, 32 no programa de Int1 e 32 no programa de Int2.

Contadores de presets mostram a quantidade de El's utilizados em cada parte do programa. Eles encontram-se abaixo da tabela de configuração.

Exemplo de utilização

Observe a configuração realizada na figura abaixo:

Habilita	a compara	comparação automática de registros						
Grupo	Hab. varr.	Hab. Int1	Hab. Int2	Efetivo	Preset	EI	Quantidade	
1	v			A000	1000	300	5	
2		v		A100	1100	250	7	
3			v	B000	2510	E000	8	
4		v	v	C000	3000	EF00	20	
5								
6								
7								
8								
9								
10								
11								
Varr. (n 5	náx 256) – In 23	t1 (máx 32) 7	Int2 (máx 28	: 32)		<u>0</u> K		r

Fig. 66. - Exemplo de comparação automática de registros

<u>GRUPO1</u>

Habilitado <u>somente na varredura</u>, utiliza o registro 1000h como primeiro preset e o El 300h como primeiro El de resultado, com a célula "*Quantidade*" com o valor 5, pode-se dizer que o efetivo A000h será comparado com os presets 1000h, 1002h..... 1008h. Quando o valor do efetivo (A000h) alcançar o valor armazenado em

EFETIVO	PRESET	EI CORRESPONDENTE
A000h	1000h	300h
A000h	1002h	301h
A000h	1004h	302h
A000h	1006h	303h
A000h	1008h	304h

algum dos presets do grupo, o respectivo El deste preset será acionado, seguindo a relação ao lado.

<u>Observação:</u> Note que logo após preencher a célula "*Quantidade*" para o GRUPO1, o contador de comparações na varredura passa a mostrar este mesmo valor, referente ao total de comparações programadas na varredura.

<u>GRUPO2</u>

Habilitado <u>somente na Int1</u>, utiliza o registro [1100h como primeiro preset e o El 250h como primeiro El de resultado, com a célula "*Quantidade*" com o valor 7, pode-se dizer que o efetivo A100h será comparado com os presets 1100h, 1102h..... 110Ch. Quando o valor do efetivo (A100h) alcançar o valor armazenado em algum dos presets do grupo, o respectivo El deste preset será acionado, seguindo a relação ao lado.

EFETIVO	PRESET	EI CORRESPONDENTE
A100h	1100h	250h
A100h	1102h	251h
A100h	1104h	252h
A100h	1106h	253h
A100h	1108h	254h
A100h	110Ah	255h
A100h	110Ch	256h

<u>Observação:</u> Note que logo após preencher a célula "*Quantidade*" para o GRUPO2, o contador de comparações na Int1 passa a mostrar este mesmo valor, referente ao total de comparações programadas na Int1.

GRUPO3

Habilitado <u>somente na Int2</u>, utiliza o registro 2510h como primeiro preset e o El E000h como primeiro El de resultado, com a célula "*Quantidade*" com o valor 8, pode-se dizer que o efetivo B000h será comparado com os presets 2510h, 2512h..... 251Eh. Quando o valor do efetivo (B000h) alcançar o valor armazenado em algum dos presets do grupo, o respectivo El deste preset será acionado, seguindo a relação ao lado.

EFETIVO	PRESET	EI CORRESPONDENTE
B000h	2510h	E000h
B000h	2512h	E001h
B000h	2514h	E002h
B000h	2516h	E003h
B000h	2518h	E004h
B000h	251Ah	E005h
B000h	251Ch	E006h
B000h	251Eh	E007h

<u>Observação:</u> Note que logo após preencher a célula "*Quantidade*" para o GRUPO3, o contador de comparações na Int2 passa a mostrar este mesmo valor, referente ao total de comparações programadas na Int2.

<u>GRUPO4</u>

Habilitado <u>no programa de Int1 e Int2</u>, utiliza o registro 3000h como primeiro preset e o El EF00h como primeiro El de resultado, com a célula "*Quantidade*" com o valor 20, pode-se dizer que o efetivo C000h será comparado com os presets 3000h, 3002h..... 3026h. Quando o valor do efetivo (C000h) alcançar o valor armazenado em algum dos presets do grupo, o respectivo El deste preset será acionado, seguindo a relação ao lado.

Observação: Note que logo após preencher a célula "*Quantidade*" para o GRUPO4, os contadores de comparação na Int1 e Int2 passam a mostrar a soma total de comparações utilizadas em cada uma das interrupções.

EFETIVO	PRESET	EI CORRESPONDENTE
C000h	3000h	EF00h
C000h	3002h	EF01h
C000h	3004h	EF02h
C000h	3006h	EF03h
C000h	3008h	EF04h
C000h	300Ah	EF05h
C000h	300Ch	EF06h
C000h	300Eh	EF07h
C000h	3010h	EF08h
C000h	3012h	EF09h
C000h	3014h	EF0Ah
C000h	3016h	EF0Bh
C000h	3018h	EF0Ch
C000h	301Ah	EF0Dh
C000h	301Ch	EF0Eh
C000h	301Eh	EF0Fh
C000h	3020h	EF10h
C000h	3022h	EF11h
C000h	3024h	EF12h
C000h	3026h	EF13h

Movimentação de Dados Através de El:

Esse recurso associa uma sequência de Estados Internos a uma sequência de registros (preset's). Quando um desses El's é acionado, o valor do preset associado a esse El é colocado no destino escolhido pelo programador.

Se mais de um El associado a um mesmo registro-destino estiver acionado, o valor do preset do menor El será colocado no destino. Se nenhum El estiver acionado, o valor contido no registro-efetivo será sempre o conteúdo do primeiro preset do canal.

Utilizando o Aplicativo WinSUP 2

Para configurar esse recurso, selecione a opção "*Habilita movimentação de dados através de EI*", na guia "Geral" da janela *Configuração de Hardware*, e em seguida acione o botão **Opções**. A seguinte janela será aberta:

Habilita movimentação de dados através de EI 🛛 🔀								
Grupo	Hab. varr.	Hab. Int1	Hab. Int2	Destino	Origem	EI	Quantidade	
1								
2								
3								
4								
5								
6								
7								
8								
9								
10								
11								_
Varr. (máx 256) Int1 (máx 32) Int2 (máx 32)								
0	0		0		ļ	<u>0</u> K	<u> </u>	r

Definição das colunas

Grupo: Cada grupo representa um efetivo e uma sequência de registros-origem que se deseja movimentar. O número máximo de grupos é de 64;

Hab. varr.: Habilita grupo na varredura. Quando selecionado, a movimentação para este grupo será realizada durante a varredura.

Hab. Int1: Habilita grupo da Int1. Quando selecionado, a movimentação para este grupo será realizada no programa de Int1.

Hab. Int2: Habilita grupo da Int2. Quando selecionado, a movimentação para este

grupo será realizada no programa de Int2.

Fig. 67. - Movimentação de dados através de El

Destino: Este é o endereço de destino da movimentação de dados. Este endereço pode ser configurado pelo usuário, podendo ser utilizado qualquer registro livre do CLP.

Origem: Este é o endereço do primeiro registro de origem; todos os outros registros de origem do grupo virão em seqüência. Esse endereço pode ser configurado pelo usuário, podendo ser utilizado qualquer sequência de registros livres do CLP.

EI: Endereço do primeiro EI de movimentação de dados. Cada registro de origem está associado a um EI, que habilita a movimentação dos dados da sua origem para o registro de destino do grupo. Essa associação é direta: o primeiro registro de origem está associado ao primeiro EI; o segundo registro ao segundo EI, etc.

Este endereço pode ser configurado pelo usuário, podendo ser utilizado qualquer seqüência de El's livres do CLP.

Quantidade: Nesse campo, é definido o número de registros-origem que estão associados ao registrodestino do grupo. O número máximo de movimentações possíveis é de 256 na varredura, 32 no programa de Int1 e 32 no programa de Int2.

Contadores de movimentação mostram a quantidade de movimentações programadas em cada parte do programa. Eles encontram-se abaixo da tabela de configuração.

Exemplo de utilização

Observe a configuração realizada na figura abaixo:

Habilita	bilita movimentação de dados através de EI 🔹 🔰 🔰				x			
Grupo	Hab. varr.	Hab. Int1	Hab. Int2	Destino	Origem	EI	Quantidade	
1	v			8000	5000	270	6	
2		٧		9000	6000	300	10	
3			v	C100	A550	E400	5	
4	v		v	1000	900	340	20	
5								
6								
7								
8								
9								
10								
11								_
Varr. (n 26	náx 256) In [10	t1 (máx 32))	Int2 (máx 25	: 32)		<u>0</u> K	<u>C</u> ancela	r

Fig. 68. - Exemplo de movimentação de dados através de El

<u>GRUPO1</u>

Habilitado <u>somente na varredura</u>, utiliza o registro 5000h como primeiro registro de origem e o El 270h como primeiro El de movimentação, com a célula "*Quantidade*" com o valor 6, pode-se dizer que quando o El 270h for acionado, o conteúdo do registro 5000h (origem) será copiado para o registro de destino (8000h) do grupo. Para cada El (dentro do conjunto de El's utilizados pelo GRUPO1) acionado, um determinado registro-origem terá seu

EI	ORIGEM	DESTINO
270h	5000h	8000h
271h	5002h	8000h
272h	5004h	8000h
273h	5006h	8000h
274h	5008h	8000h

conteúdo copiado para o registro de destino (8000h) do grupo. A tabela ao lado relaciona os El's com seus respectivos registros.

Observação: Note que logo após preencher a célula "*Quantidade*" para o GRUPO1, o contador de movimentações na varredura passa a mostrar este mesmo valor, referente ao total de movimentações automáticas programadas na varredura.

<u>GRUPO2</u>

Habilitado <u>somente na Int1</u>, utiliza o registro 6000h como primeiro registro de origem e o El 300h como primeiro El de movimentação, com a célula "*Quantidade*" com o valor 10, pode-se dizer que quando o El 300h for acionado, o conteúdo do registro 6000h (origem) será copiado para o registro de destino (9000h) do grupo. Para cada El (dentro do conjunto de El's utilizados pelo GRUPO2) acionado, um determinado registro-origem terá seu conteúdo copiado para o registro de destino (9000h) do grupo. A tabela ao lado relaciona os El's com seus respectivos registros.

EI	ORIGEM	DESTINO
300h	6000h	9000h
301h	6002h	9000h
302h	6004h	9000h
303h	6006h	9000h
304h	6008h	9000h
305h	600Ah	9000h
306h	600Ch	9000h
307h	600Eh	9000h
308h	6010h	9000h
309h	6012h	9000h

<u>Observação</u>: Note que logo após preencher a célula "*Quantidade*" para o GRUPO2, o contador de movimentações na Int1 passa a mostrar este mesmo valor, referente ao total de movimentações automáticas programadas na Int1.

GRUPO3

Habilitado somente na Int2, utiliza o registro A550h como primeiro registro de origem e o El E400h como primeiro El de movimentação, com a célula "Quantidade" com o valor 5, pode-se dizer que quando o El E400h for acionado, o conteúdo do registro A550h (origem) será copiado para o registro de destino (C100h) do grupo. Para cada El (dentro do conjunto de El's utilizados pelo GRUPO3) acionado, um determinado registro-origem terá seu conteúdo copiado para o registro de destino (C100h) do grupo. A tabela ao lado relaciona os El's com seus respectivos registros.

EI	ORIGEM	DESTINO
E400h	A550h	C100h
E401h	A552h	C100h
E402h	A554h	C100h
E403h	A556h	C100h
E404h	A558h	C100h

Observação: Note que logo após preencher a célula "Quantidade" para o GRUPO3, o contador de movimentações na Int2 passa a mostrar este mesmo valor, referente ao total de movimentações automáticas programadas na Int2.

GRUPO4

Habilitado na varredura e no programa de Int2, utiliza o registro 900h como primeiro registro de origem e o El 3A0h como primeiro El de movimentação, com a célula "Quantidade" com o valor 20, pode-se dizer que quando o El 3A0h for acionado, o conteúdo do registro 900h (origem) será copiado para o registro de destino (1000h) do grupo. Para cada El (dentro do conjunto de El's utilizados pelo GRUPO4) acionado, um determinado registro-origem terá seu conteúdo copiado para o registro de destino (1000h) do grupo. A tabela ao lado relaciona os El's com seus respectivos registros.

Observação: Note que logo após preencher a célula "Quantidade" para o GRUPO4, os contadores de movimentação na varredura e no programa de Int2 passam a mostrar a soma total de movimentações automáticas utilizadas em cada região.

El	ORIGEM	DESTINO
3A0h	900h	1000h
3A1h	902h	1000h
3A2h	904h	1000h
3A3h	906h	1000h
3A4h	908h	1000h
3A5h	90Ah	1000h
3A6h	90Ch	1000h
3A7h	90Eh	1000h
3A8h	910h	1000h
3A9h	912h	1000h
3AAh	914h	1000h
3ABh	916h	1000h
3ACh	918h	1000h
3ADh	91Ah	1000h
3AEh	91Ch	1000h
3AFh	91Eh	1000h
3B0h	920h	1000h
3B1h	922h	1000h
3B2h	924h	1000h
3B3h	926h	1000h

Simulador de Ângulo

É possível obter nos Módulos de Processamento relacionados com os drivers **MPC4004R** e **MPC4004T** uma simulação de um sinal de um transdutor angular utilizando o timer interno do processador. Esta situação é denominada de Modo Ângulo Simulado não havendo necessidade de ter o transdutor angular nem o contador de alta velocidade. Para esta simulação é necessário definir o setpoint em **RPM** (4.0 a 180.0) e desbloquear o estado interno da contagem para o modo ângulo simulado.

Quando o Modo Ângulo Simulado está habilitado não é possível utilizar o contador rápido no Módulo de Processamento nos modos normal ou ângulo.

Mapeamento de Memória

ESTADOS INTERNOS RELACIONADOS					
003F 0030	16 EI DE ÂNGULOS	(Modo Ângulo Simulado)			
00DF	BLOQUEIO DE CONTAG	EM (Simulador de Ângulo)			

REGISTROS ASSOCIADOS				
04D7 04D6	EFETIVO PRA O MODO ÂNGULO SIMULADO			
04D1 04D0	SETPOINT PARA O MODO ÂNGULO SIMULADO (RPM)	(1)	(2)	
053F 0500	16 SETPOINTS DE ÂNGULOS INICIAIS/FINAIS		(3)	

(1) Valores entre 0 e 4 RPM serão sempre 4 RPM.

(2) O valor máximo para o setpoint é de 180.0 RPM.

(3) Estrutura de dados dos ângulos iniciais/finais. (Ver página 163)

Contador Rápido (Presente no Módulo de Processamento)

O Contador Rápido no Módulo de Processamento destina-se a medições de posicionamentos através da contagem de pulsos (0000 a 9999) à freqüência máxima de 3 kHz.

Este contador receberá sinal de pulso na entrada E100 (unidirecional) ou E100 e E101 (bidirecional).

Para configurar as entradas é necessário verificar os jumpers contidos na CPU:

PLACA	JUMPER	POSIÇÃO	FUNÇÃO
404 2906 """	et 2	A	Encoder unidirecional
101.2806 "P" ou 101.2807 "N"	312	В	Encoder bidirecional
	ST3	А	Encoder bidirecional
		В	Encoder unidirecional

Default: bidirecional

Observação: a CPU do MPC4004 é composta por duas placas de circuito impresso. Os jumpers de definição do encoder encontram-se na placa inferior. Para acessá-los é necessário remover a placar superior, retirando os parafusos de fixação.

Após alterar os jumpers ao remontar as placa verificar se a conexão entre as mesmas está correta.

O contador rápido pode atuar em dois modos:

- Modo Normal
- Modo Ângulo

Modo Normal

Este modo de funcionamento permite uma contagem de pulsos de 0000 a 9999, com a possibilidade de:

- Zerar a contagem através de estado interno de RESET.
- Carregar um valor inicial para contagem através de estado interno de LOAD VALOR INICIAL.
- Bloquear a contagem através de estado interno de BLOQUEIO.
- Habilitar a saída física de comparação através de estado interno HABILITA SAÍDA.

Neste modo existem ainda os estados internos de comparação (>, < e =) entre um valor de setpoint e o valor efetivo do contador, estes estados internos são de leitura para o programa de usuário.

A cada pulso amostrado, um registro de contagem é incrementado e uma comparação é executada com um valor de setpoint pré-definido pelo usuário. O resultado da comparação é deixado em disponibilidade através de estados internos específicos que podem ser usados no programa de usuário. O resultado da comparação também é colocado em três saídas físicas configuradas pelo usuário (**S180** a **S187**).

Importante: Não há marca de zero.

Modo Ângulo

Este modo tem como diferença em relação ao anterior a contagem, que varia de um valor da marca zero para sentido crescente. Esta marca zero pode ou não corresponder ao sinal de referência (Z e seu complementar).

Desta maneira a utilização de um encoder angular com 360 pulsos por volta, poderia determinar como marca crescente o valor 0000 e limitando a contagem entre os valores 0000 a 0359.

Neste modo existem ainda 16 estados internos (denominados estados internos de ângulos) que são resultados de comparação entre o valor efetivo da contagem e 16 regiões definidas através de setpoints denominados presets iniciais e finais. Se o valor do preset inicial for menor que o valor do preset final, um estado interno correspondente permanecerá fechado (**ON**) enquanto o valor efetivo da contagem pertencer dentro do intervalo definido. Se o preset inicial for maior que o preset final, um estado interno correspondente permanecerá aberto (**OFF**) enquanto o valor efetivo da contagem pertencer dentro do intervalo definido.

Importante: O sinal da marca zero deve ser conectado à entrada E103 do Módulo de Processamento

Mapeamento de Memória

ESTADOS INTERNOS RELACIONADOS				
00D7	EI RESERVADO		(2)	
00D6	EFETIVO < SETPOINT CONTADOR RÁPIDO (Modo Normal)		(2)	
00D5	EFETIVO = SETPOINT CONTADOR RÁPIDO (Modo Normal)		(2)	
00D4	EFETIVO > SETPOINT CONTADOR RÁPIDO (Modo Normal)		(2)	
00D3	HABILITA SAÍDAS CONTADOR RÁPIDO (Modo Normal)	(1)		
00D2	BLOQUEIA CONTAGEM DO CONTADOR RÁPIDO (Modo Normal)	(1)		
00D1	LOAD VALOR INICIAL NO EFETIVO DO CONTADOR RÁPIDO (Modo Normal)	(1)		
00D0	RESET EFETIVO CONTADOR RÁPIDO (Modo Normal)	(1)		
003F 0030	16 EI DE ÂNGULOS (Modo Ângulo)			(3)

(1) estados escritos como saída no software de usuário, para uso no software básico.

(2) estados de leitura apenas pelo software usuário.

(3) estes estados passam a ser de uso geral quando o contador rápido do módulo de processamento está no modo normal.

REGISTROS ASSOCIADOS - Modo normal ⁽¹⁾		
04DB 04DA	VALOR INICIAL	
04D9 04D8	VALOR A SER CARREGADO NO EFETIVO QUANDO A CONTAGEM PASSAR PELA MARCA DE ZERO NO SENTIDO DECRESCENTE	
04D7 04D6	EFETIVO	
04D5 04D4	RESERVADO	
04D3 04D2	SETPOINT	
04D1 04D0	RESERVADO	

REGISTROS ASSOCIADOS - Modo ângulo ⁽²⁾		
04DB 04DA	VALOR DA MARCA ZERO PARA SENTIDO DECRESCENTE	
04D9 04D8	VALOR DA MARCA ZERO PARA SENTIDO CRESCENTE	
04D7 04D6	EFETIVO	
04D5 04D4	RESERVADO	
04D3 04D2	RESERVADO	
04D1 04D0	VALOR EM RPM (3)	

(1) No modo normal a contagem é feita do VALOR INICIAL até o SETPOINT.(2) No modo ângulo o valor da marca zero para sentido decrescente é igual ao número de pulsos por volta menos um.

(3) O cálculo do valor em RPM é feito só no modo ângulo e considerando-se encoder de 360 pulsos/volta, independentemente do encoder realmente usado.

	ESTRUTURA DE DADOS P
051E	ÂNGULO FINAL 08
051C	ÂNGULO INICIAL 08
051A	ÂNGULO FINAL 07
0518	ÂNGULO INICIAL 07
0516	ÂNGULO FINAL 06
0514	ÂNGULO INICIAL 06
0512	ÂNGULO FINAL 05
0510	ÂNGULO INICIAL 05
050E	ÂNGULO FINAL 04
050C	ÂNGULO INICIAL 04
050A	ÂNGULO FINAL 03
0508	ÂNGULO INICIAL 03
0506	ÂNGULO FINAL 02
0504	ÂNGULO INICIAL 02
0502	ÂNGULO FINAL 01
0500	ÂNGULO INICIAL 01

STRUTURA DE DADOS PARA ÂNGULOS INICIAIS E FINAIS				
NGULO FINAL 08	053E	ÂNGULO FINAL 16		
NGULO INICIAL 08	053C	ÂNGULO INICIAL 16		
NGULO FINAL 07	053A	ÂNGULO FINAL 15		
NGULO INICIAL 07	0538	ÂNGULO INICIAL 15		
NGULO FINAL 06	0536	ÂNGULO FINAL 14		
NGULO INICIAL 06	0534	ÂNGULO INICIAL 14		
NGULO FINAL 05	0532	ÂNGULO FINAL 13		
NGULO INICIAL 05	0530	ÂNGULO INICIAL 13		
NGULO FINAL 04	052E	ÂNGULO FINAL 12		
NGULO INICIAL 04	052C	ÂNGULO INICIAL 12		
NGULO FINAL 03	052A	ÂNGULO FINAL 11		
NGULO INICIAL 03	0528	ÂNGULO INICIAL 11		
NGULO FINAL 02	0526	ÂNGULO FINAL 10		
NGULO INICIAL 02	0524	ÂNGULO INICIAL 10		
NGULO FINAL 01	0522	ÂNGULO FINAL 09		
NGULO INICIAL 01	0520	ÂNGULO INICIAL 09		

Capítulo 5 – Características dos Drivers MPC4004R e MPC4004T

Exemplo: Seja o primeiro ângulo inicial de 0º e primeiro ângulo final de 150º:

0500h	0501h	0502h	0503h
00	00	01	50

Utilizando o Aplicativo WinSUP 2

Na guia "**Geral**" da janela *Configuração de Hardware,* marque a opção "**Contador rápido**", escolha o modo do contador e clique no botão **Opções**, onde uma janela para definição das saídas do contador se abrirá, como mostra a figura abaixo:

Contador rápido / Simulador	Modo do co	ntador 	
 Contador rápido 	- ^ .	Contador rápido	×
C Simulador de ângulo	C Angulo	Comparação	Saída
		Efetivo > Setpoint	Nenhuma 🔽
		Efetivo = Setpoint	Nenhuma 💌
		Efetivo < Setpoint	Nenhuma 💌
		<u></u> K	<u>C</u> ancelar

Fig. 69. - Contador Modo Normal

Escolha uma das saídas digitais para relacionar com o resultado da comparação do efetivo com o setpoint do contador de alta velocidade presente no módulo de processamento. Conforme o resultado da comparação, a saída relacionada é automaticamente ativada.

Caso não queira relacionar a saída digital escolha a opção "Nenhum".

Clique no botão "OK" para confirmar os valores.

Temporizadores e Contadores

O aplicativo WinSUP 2, possibilita simular Temporizadores com retardo na energização e Contadores, através das Instruções **TMR** (Temporizador) e **CNT** (Contador).

O estado interno relacionado ao Temporizador passa de desacionado (OFF) para acionado (ON) quando o Efetivo atingir o Preset de tempo programado.

Também para o Contador os estados internos são acionados quando o Efetivo da contagem atingir o Preset.

Os Temporizadores possuem base de tempo de **0,01** segundos, tendo assim o tempo máximo de **99,99** segundos.

Estão disponíveis ao usuário **48**^{*} Temporizadores ou Contadores.

* - Total utilizado em um programa somando contadores e temporizadores.

Importante: Para habilitar os temporizadores/contadores de 33 a 48 veja página 179.

Mapeamento de Memória

ESTADOS INTERNOS RELACIONADOS		
001F 0000	32 TEMPORIZADORES/CONTADORES	
REGISTROS ASSOCIADOS		
047F 0440	32 EFETIVOS DE TEMPORIZADOS/CONTADORES	
043F 0400	32 PRESETS DE TEMPORIZADORES/CONTADORES	

Abaixo temos uma tabela realizando a referência cruzada dos Estados Internos, Presets e Efetivos dos Temporizadores/Contadores:

N٥	ESTADO INTERNO	PRESET	EFETIVO
1	0000h	0400h	0440h
2	0001h	0402h	0442h
3	0002h	0404h	0444h
4	0003h	0406h	0446h
5	0004h	0408h	0448h
6	0005h	040Ah	044Ah
7	0006h	040Ch	044Ch
8	0007h	040Eh	044Eh
9	0008h	0410h	0450h
10	0009h	0412h	0452h
11	000Ah	0414h	0454h
12	000Bh	0416h	0456h
13	000Ch	0418h	0458h
14	000Dh	041Ah	045Ah
15	000Eh	041Ch	045Ch
16	000Fh	041Eh	045Eh

N٥	ESTADO INTERNO	PRESET	EFETIVO
17	0010h	0420h	0460h
18	0011h	0422h	0462h
19	0012h	0424h	0464h
20	0013h	0426h	0466h
21	0014h	0428h	0468h
22	0015h	042Ah	046Ah
23	0016h	042Ch	046Ch
24	0017h	042Eh	046Eh
25	0018h	0430h	0470h
26	0019h	0432h	0472h
27	001Ah	0434h	0474h
28	001Bh	0436h	0476h
29	001Ch	0438h	0478h
30	001Dh	043Ah	047Ah
31	001Eh	043Ch	047Ch
32	001Fh	043Eh	047Eh

Importante: No aplicativo WinSUP 2 o usuário tem disponível o Mapeamento de Memória da série **MPC4004**, para acessá-lo basta teclar [Shift+F1], em qualquer menu.

Temporizadores (0,001s)

Existem 2 temporizadores de 0,001s que podem atingir o valor máximo de 9,999 seg.

Quando é ativado o estado interno 0020h o temporizador 1 (de valor efetivo 0542h e 0543h) é inicializado, terminando quando atingir o seu preset (em 0540h e 0541h), sendo que durante a contagem a saída relacionada **S186** permanecerá ativada.

A saída **S186** é acionada ao início da contagem e desacionada ao término da mesma, podendo ser desacionada pelo usuário independentemente do estado interno 0020h.

O mesmo ocorre para o estado interno 0021h e a saída relacionada S187 do temporizador 2.

Mapeamento de Memória

com os temporizadores de 0,001s :

ESTADOS INTERNOS RELACIONADOS		
0021	HABILITA TEMPORIZADOR 02	
0020	HABILITA TEMPORIZADOR 01	

com os temporizadores de 0,001s :

REGISTROS ASSOCIADOS		
0547 0546	EFETIVO DO TEMPORIZADOR 02	
0545 0544	PRESET DO TEMPORIZADOR 02	
0543 0542	EFETIVO DO TEMPORIZADOR 01	
0541 0540	PRESET DO TEMPORIZADOR 01	

Importante: Os estados internos e registros serão utilizados para os 2 temporizadores de 0,001s quando configurados pelo usuário, casos contrários serão de uso geral.

A habilitação dos temporizadores de 0,001s, é feita utilizando diretamente a pseudo-instrução **TM1** ou **TM2**.

Motor de Passo

Os drivers MPC4004R e MPC4004T permitem o acionamento de 1 motor de passo de 4 fases x 2A (corrente máxima por fase), podendo ser ligado diretamente nas saídas do controlador, ou mesmo gerar pulsos para alimentar a entrada de um driver de motor de passo. As saídas utilizadas são:

Modo 4 fases

• Motor de Passo controlado pelas 4 saídas S180 a S183, sendo as demais 184 a 187, de uso geral.

Modo Gerador de Pulsos

• Saída de CLOCK somente a saída S180, sendo as demais 181 a 187 de uso geral.

Estados Internos Relacionados

MODO 4 FASES				
EI	Descrição			
200	HABILITA TORQUE			
201	BLOQUEIO DE CONTAGEM			
202	MODO DE FUNCIONAMENTO			
203	SENTIDO DE ROTAÇÃO			
204	POSIÇÃO ALCANÇADA			
205	TIPO DE PASSO			
206	RESET DO EFETIVO			

MODO GERADOR DE PULSOS				
EI	Descrição			
200	Não utilizado			
201	HABILITA/BLOQUEIO DE CLOCK			
202	MODO DE FUNCIONAMENTO			
203	Não utilizado			
204	POSIÇÃO ALCANÇADA			
205	Não utilizado			
206	RESET DO EFETIVO			

Descrição dos estados internos relacionados:

200- habilita torque - quando ativado energiza o motor com o último passo ativo.

201- bloqueio – <u>Modo 4 Fases:</u> quando ativado inibirá a progressão de contagem, parando o motor instantaneamente deixando torque no eixo do motor.

Modo Gerador de Pulsos: quando desativado a saída S180 estará enviando pulsos, ativado inibirá a saída de pulsos.

202- escolha do modo de funcionamento :

Ativado - modo contínuo Desativado - modo posição

Modo contínuo - nesta condição após a habilitação do motor , o mesmo começará a girar indefinidamente

Modo posição - <u>Modo 4 Fases:</u> nesta condição, o motor se deslocará uma quantidade programada de pulsos , parando com torque no final da contagem.

<u>Modo Gerador de Pulsos:</u> nesta condição, o motor se deslocará uma quantidade programada de pulsos , parando com o envio de pulsos da saída S180 no final da contagem.

203- sentido ativado horário , desativado anti-horário

Observação: a direção de rotação está relacionada à seqüência de pulsos que o motor irá receber, desta forma para mudar a direção de rotação basta inverter a seqüência de acionamento das fases o motor .

204- posição alcançada. Este estado interno será ligado toda vez que o motor estando no modo posição e após ser habilitado, atingir a posição definida nos endereços 4D8/4DB.

205- escolha do tipo de passo :	desligado	- meio passo
	ligado	- passo inteiro

Observação: a escolha de meio passo permite dobrar a resolução do motor .

206- Reset do efetivo - Ao ser ativado colocará zeros nos endereços 4D4/4D5 e 4D6/4D7

Registros relacionados :

4D8 e 4DA - preset do número de passos, 8 dígitos (00000000 à 99999999) (modo posição)
4D4 e 4D6 - efetivo de contagem dos passos, 8 dígitos (00000000 à 99999999) (modo posição)
4D0 e 4D1 - valor de velocidade min. 5.0 RPM máx 180.0 RPM

Observação: A velocidade do motor em RPM calculada diferente para cada uma das configurações do motor de passo. Para o modo 4 fases, considera-se um motor de 360 passos por volta, Já para o modo de gerador de pulsos, considera-se um motor com número de passos por volta definido na configuração.

A velocidade máxima efetivamente alcançada depende do tipo de motor que se está utilizando, bem como do torque necessário ao processo (Quanto mais veloz menor será o torque do motor).

Tabelas de acionamento do modo 4 fases:

. . .

	Passo Inteiro				
	S180	S181	S182	S183	
1	ON	OFF	ON	OFF	
2	ON	OFF	OFF	ON	
3	OFF	ON	OFF	ON	
4	OFF	ON	ON	OFF	
1	ON	OFF	ON	OFF	

	Meio passo					
	S180	S181	S182	S183		
1	ON	OFF	ON	OFF		
2	ON	OFF	OFF	OFF		
3	ON	OFF	OFF	ON		
4	OFF	OFF	OFF	ON		
5	OFF	ON	OFF	ON		
6	OFF	ON	OFF	OFF		
7	OFF	ON	ON	OFF		
8	OFF	OFF	ON	OFF		
1	ON	OFF	ON	OFF		

Interligação Física com o Controlador Programável (válido para módulos tipo "N")

As saídas do controlador programável podem ser divididas em dois módulos:

Circuito de controle: necessita de uma tensão de 24V /10mA para funcionar .

Circuito de potência: pode ser considerado um circuito com coletor aberto, permitindo a conexão de tensões que podem variar de 3 a 30V com correntes de até 2 A.

Desta forma, uma vez polarizado o circuito de controle em 24V, a ligação do motor de passo nas saídas poderá ser feito com tensões mais baixas por ex. 5V , sem a necessidade de limitadores de tensão.

Esquema de Ligação utilizando o modo 4 fases

Fig. 70. - Esquema de ligação entre Motor de Passo e Controlador Programável (modo 4 fases)

Fig. 71. - Esquema de ligação entre o driver de Motor de Passo e Controlador Programável.

Utilizando o Aplicativo WinSUP 2

Para ativar o modo motor de passo, é necessário marcar a opção **"Habilita motor de passo"**, na guia "**Geral**" da janela *Configuração de Hardware*. Nesta condição os registros/EI's do modo motor de passo estarão reservados para a aplicação.

	Configuração do projeto					×
O modo de 4 fases é	Geral Expansão IHM Background Print					
definido	🗖 Página protegida por flash	Opções	Comunicação			
automaticamente ao	Habilita contador/temporizador 33 a 48	Opções		APR03	Modbus	Print
marcar a opcão	Habilita comparação de máximos e mínimos	Opcões	Bau Canal A	57600	57600 🔽	57600 -
"Habilita motor de	Habilta comparação automática de registros	Opcões	RS-232 Paris	lade Nenhuma	Nenhuma 💌	Nenhuma 💌
passo". na	Habilita movimentação de dados através de El	Opcões	Tam	anho 8 _		8 -
Configuração de	Configura leitura caracter através do canal serial	Opcões	Stop	bits 1	2	1 💌
Hardware.	Habiita programa de interrupção 1	Doches		APR03	Modbus	Print
	Habilita programa de interrupção 2	Opcões	Bau	57600	57600 💌	57600 🔽
Para alterar para o	Instrução CMP com El ligado quando desabilitado	000000	Canal B Paris BS-485	lade Nenhuma	Nenhuma 💌	Nenhuma 💌
modo de gerador de	Habiita El's 022 a 025 para uso do sistema		Tam	anho 8	8 🔻	8 💌
pulsos (através da	Wath dog timer habiltado		Stop	bits 1	2 💌	1 💌
saída 180) pressione	E White motor de parco	One for	Contador ránido / 9	im dador	-Mada da conta	dar
o botão "Oncões"	Unabilita IIUV resecta	Občoes	Nenhum	mulauoi	C Normal	Roczes
para abrir a janela			Contador rápido		No incrimer	oppose.
abaixo e mude a	Motor de passo	×	Simulador de âr		C Ângulo	
	G Gara suke A (ana (190 a 192)	N	1			
para "Gera pulso 1					-	
faco" dofinindo	C Gera pulso 1 fase (180)	N N			<u> </u>	
também o número do	Nr. pulsos por volta: 360	-				
puisos por volta que						
o CLP devera seguir.		ancelar				

Esta número pode ser escolhido dentre as seguintes resoluções: 200, 360, 400 e 1000 pulsos por volta.

Envio de Caracteres Através do Canal Serial (Instrução PRINT)

Envio de caracteres para um dispositivo externo, como uma impressora serial, servo motores, modem, etc.

Estados Internos Relacionados

- **0FB** Habilita modo Print
- **0BD** Determina para qual canal serial será enviado os caracteres
 - desligado canal RS232 / ligado canal RS485
- **0FC** estado interno que indica canal serial ocupado ou seja durante a transmissão dos dados ele ficará ligado.

Este estado auxilia o usuário a sincronizar o envio de várias mensagens.

Funcionamento: Ao habilitar o modo print (El 0FB ligado), e selecionado o canal a ser enviado, o usuário deverá ativar a instrução "PRINT" através de um "MONOA para enviar os dados através do canal serial".

Importante: O estado 0FB deve ficar ativo durante todo o tempo de transmissão dos dados. Ao ativar o estado 0FB, o controlador não mais poderá receber programação através do WinSUP 2, pois seu canal serial fica reservado para o envio de dados.

A taxa de transmissão para o modo print é definida pelo usuário no menu de configuração de hardware. (para maiores detalhes ver o item "Canais de comunicação serial" página 95).

Leitura de Caracteres Através do Canal Serial

Lê caracteres de um dispositivo externo como leitor de código de barras, servo motores, retorno de conexão com modem, etc.

Registros e Estados Internos Relacionados

0AB	- Habilita leitura de caracteres do canal s	erial
-----	---	-------

0FB - Habilita modo Print

0E00 - 0EFE - Buffer de recepção dos caracteres (255 máx.)

0FE4/0FE5 - Registro contador de caracteres recebido

0BD - Determina qual canal serial receberá os caracteres desligado - canal RS232 / ligado - canal RS485

Funcionamento: Estando em modo Print (El 0FB ligado), e com o estado interno especial "0AB" também ligado, os dados recebidos em RX do canal de comunicação RS232 são armazenados a partir do endereço 0E00 até um limite de 255 caracteres, configurável pelo usuário.

Quando o estado "0AB" estiver desligado, os caracteres recebidos em RX do canal de comunicação RS232 são ignorados.

A quantidade de bytes recebidos é atualizada no registro 0FE4/0FE5 .

A transição de off para on do estado interno 0AB, provoca a limpeza do buffer (colocação do valor "FF" entre 0E00 e 0EFF) e o zeramento do registro contador de caracteres recebidos .

Funcionamento do estado interno 0AB:

Fig. 72. - Funcionamento do Estado Interno 0AB

Utilizando o Aplicativo WinSUP 2

Na guia "Geral" da janela *Configuração de Hardware,* marque a opção "Configura leitura caractere através canal serial", e clique no botão **Opções**, onde uma janela para definição dos parâmetros se abrirá, como mostra a figura abaixo:

Configura leitura caracter através do canal serial				
🔲 Habilita prog	👸 Configuração da escuta serial 🛛 💶 🗙			
🔲 Habilita prog	Enderson de la Wer de recentră e 1999			
🔲 Instrução Clv	Endereço do burrer de recepção			
🔲 Habilita El's I	Tamanho do buffer de recepção 252			
🔽 Watch dog t				
🔲 Habilita moto	<u> </u>			

Fig. 73. - Configuração para leitura de caracteres pelo canal serial

Impressão de Dados (TXPR)

Existem aplicações em que é necessário a impressão de relatórios pré-formatados ou cabeçalhos em ASCII. O recurso de Impressão de Dados facilita a composição destes relatórios e cabeçalhos.

Utilizando o Aplicativo WinSUP 2

Na guia "**Print**", da janela *Configuração de Hardware*, é possível digitar o texto desejado. O texto digitado é armazenado, em código ASCII, na memória do controlador. Em conjunto com as instruções TXPR e PRINT, este recurso permite a impressão dos textos através de um dos canais seriais do controlador.

O controlador armazena até 16 tabelas de Print, com até 256 bytes cada.

A figura abaixo mostra a guia para configuração das tabelas de Print:

Configu	ração do projeto	×
Geral	Expansão IHM Background Print	
	Páginas de impressão 01 - Sem programa 000 bytes 03 - Sem programa 000 bytes 04 - Sem programa 000 bytes 05 - Sem programa 000 bytes 06 - Sem programa 000 bytes 06 - Sem programa 000 bytes 07 CR automático 06 - Sem programa 000 bytes 08 - Sem programa 000 bytes 09 - Sem programa 000 bytes 09 - Sem programa 000 bytes 00 - Sem programa 000 - Sem pro	
	Conteúdo da página	
ATOS Rua Vila CEP	ATOS AUTOMAÇÃO INDUSTRIAL ltda Rua Arnoldo Felmanas, 201 Vila Friburgo - São Paulo - SP CEP: 04774-010	
	*******ATOS na internet****** www.atos.com.br	
	<u> </u>	

Fig. 74. - Configuração das tabelas de PRINT

Definição dos Campos

Páginas de impressão: Identifica as tabelas, mostrando parte de seu conteúdo e seu tamanho, em bytes.

Limpar texto: Apaga o texto da tabela selecionada.

Offset: Mostra a posição em que o caractere está sendo alocado, tendo como referência o primeiro caractere digitado que receberá a posição relativa 00h.

Conteúdo da página: Caixa de texto para a edição do conteúdo da página de impressão selecionada.

Número de colunas: Quantidade de colunas desejadas na tabela (máximo de 40).

CR automático: Insere um caractere de *Carrier Return* no final de cada linha.

LF automático: Insere um caractere de *Line Feed* no final de cada linha.

Comunicação Background

Os drivers MPC4004R e MPC4004T possuem o recurso de "mestre de rede" em qualquer um de seus canais seriais, possibilitando a troca de informações entre controladores através da comunicação background.

A comunicação background é o mecanismo através do qual um CLP pode atuar como mestre de rede. Consiste em uma lista de tarefas realizada ciclicamente pelo CLP, em paralelo com o processamento do programa usuário. Nesta lista de tarefas, são programadas a leitura e a escrita, pelo mestre, de registros/El's de dispositivos escravos de rede.

A programação background é útil por exemplo no transporte de alarmes das estações onde o programador terá, além das informações do processo controlado pelo mestre, as informações das estações supervisionadas.

Os CLP's **Atos** podem utilizar dois protocolos de comunicação diferentes para trocar dados entre si: • O protocolo APR03 e o protocolo MODBUS RTU.

Utilizando-se um dos dois protocolos suportados, é possível construir uma rede mestre-escravo de até 31 pontos. Em ambos os casos, apenas um dos dispositivos conectados a rede atuará como mestre.

Estados Internos Relacionados:

0AA – Estado interno de definição do canal mestre:

STATUS	FUNÇÃO
LIGADO	Mestre da RS232
DESLIGADO	Mestre da RS485

3D0 - Estado interno de habilitação do modo mestre, ao ser ativado o canal serial escolhido iniciará a varrer a tabela com as regiões a serem atualizadas nas estações. Ao ser desligado, o canal serial volta a ser um canal escravo.

Importante: O canal serial, ao ser definido como mestre, não mais responderá a aplicativos como WinSUP 2, PEP ou sistemas supervisórios, pois estará havendo colisão no canal de comunicação em função de haver 02 dispositivos mestre na rede.

3D1 a 3EF - indicam respectivamente EI's de falha de comunicação com as estações de 01 a 31. Quando houver mais de 05 tentativas consecutivas sem sucesso com uma determinada estação, será ligado automaticamente o estado interno de falha, sendo desligado automaticamente quando houver o restabelecimento da comunicação.

Regiões de comunicação:

É possível definir até 85 frames de comunicação de 16 bytes cada utilizando o protocolo APR03 e até 73 frames de 16 bytes cada utilizando o protocolo MODBUS/RTU.

Utilizando-se o protocolo APR03, cada região receberá ainda o atributo de enviar para a estação ou receber da estação:

- "Mestre \rightarrow CP" envia os bytes do terminal para o CP
- "Mestre ← CP" envia os bytes do CP para o terminal

Também é possível definir o endereço do mestre e o endereço do CP onde ocorrerá o envio ou recebimento das informações.

Utilizando o Aplicativo WinSUP 2

A programação da comunicação background é feita na guia "**Background**", na janela *Configuração de Hardware*. Uma vez configurada a comunicação background, o CLP irá executar os frames programados, sempre que o estado interno 3D0h estiver ligado.

• Utilizando o protocolo Apr03: O protocolo APR03 foi criado pela Atos, sendo utilizado em todos os seus controladores; é do tipo mestre/escravo.

Especificações:	Baud Rate Paridade Stop bit Data bit	= 2400, 4800, 9600, 19200, 57600 = nenhuma = 1 = 8 bits

Para ativar o modo mestre do protocolo APR03, siga os seguintes passos:

- **1.** Habilite a comunicação background;
- **2.** Selecione o protocolo APR03 na caixa Protocolo.
- **3.** Declare os frames de comunicação, preenchendo os campos End. Mestre, Direção, End. CP, Num. CP e Num. Bytes.
- **4.** Ative o estado interno 3D0h.
 - Utilizando o protocolo MODBUS: O protocolo Modbus foi desenvolvido pela empresa Modicom, sendo implementado o tipo RTU (Remote Terminal Unit) nos CLP's Atos.

Especificações:	Baud Rate Parity	= 2400, 4800, 9600, 19200, 57600 = nenhuma
	Stop Bit	= 1 ou 2 bits configuráveis (1 default)
	Data bit	= 8 bits

Para o protocolo Modbus, as seguintes funções estão disponíveis:

Read Coil Status	(0x01)
- Read Input Status	(0x02)
- Read Holding Registers	(0x03)
- Force Single Coil	(0x05)
- Preset Single Register	(0x06)
- Force Multiple Coils	(0x0F)
- Preset Multiple Registers	(0x10)
Exception Response	(ERROR)

Para ativar o modo mestre do protocolo Modbus, siga os seguintes passos:

- **1.** Habilite a comunicação background
- 2. Selecione o protocolo Modbus na caixa Protocolo.
- **3.** Declare os frames de comunicação, preenchendo os campos End. Mestre, Direção, End. CP, Num. CP e Num. Bytes.
- **4.** Ative o estado interno 3D0h.

<u>Observação:</u> Mais informações sobre o protocolo MODBUS estão disponíveis nos boletins técnicos **B05/00 – Protocolo MODBUS** e **B01/01 – Protocolo MODBUS EXEMPLOS** na área de download do site da **Atos**: <u>www.atos.com.br</u>.

A figura abaixo mostra a guia para configuração da comunicação background:

Conf	iguraç	;ão do projeto							X
Ger	Geral Expansão IHM Background Print								
	T Habilita comunicação background								
А 1- 1	APR03 Protocolo Id. End. Mestre End. CP Núm. CP Núm. bytes Image: Confirmer 1 FFFF 1 8 Confirmer C								
	ld	Endereço Mestre	Direção	Endereço Cp	Número Cp	Número bytes	_	Limpar	_
	1	FFFF	>	FFFF	1	8			Timeout (x10 ms) 5
L	2	FFFF	>	FFFF	1	8			
	3	FFFF	>	FFFF	1	8			
	4	FFFF	>	FFFF	1	8			
	5	FFFF	>	FFFF	1	8			
	6	FFFF	>	FFFF	1	8			
	7	FFFF	>	FFFF	1	8			
	8	FFFF	>	FFFF	1	8			
	9	FFFF	>	FFFF	1	8			
	10	FFFF	>	FFFF	1	8			
Ē	-		·		·	· · · · · ·	<u> </u>		
									<u>O</u> K <u>C</u> ancelar

Fig. 75. - Configuração Background

Definição dos Campos

Endereço Mestre: endereço inicial a ser transmitido ou recebido.

Direção: sentido de transmissão ou recebimento.

Endereço CP: endereço inicial a ser transmitido ou recebido.

Número CP: número do CP na rede.

Número Bytes: quantidade de bytes transmitidos da região de menu.

Observação: quando a comunicação estiver habilitada, os CLP's enviam e recebem dados atualizando-os.

Habilita Comparação de Máximos e Mínimos

Esse recurso, disponível somente para CPU's dos drivers MPC4004R e MPC4004T, executa a comparação de um registro qualquer, chamado de *"Efetivo"*, com outros dois registros (também configuráveis) chamados de *"End. Mínimo"* e *"End. Máximo"* durante a varredura. Podem ser realizadas até 76 comparações.

Os registros "*End. Mínimo*" e "*End. Máximo*" possuem, cada um, um El associado. A partir do momento que o registro efetivo igualar-se, ou encontrar-se abaixo do valor estabelecido no registro "*End. Mínimo*" o El associado a esse registro será acionado, da mesma maneira que se o registro efetivo igualar-se, ou encontrar-se acima do valor estabelecido no registro "*End. Máximo*" o El associado a esse registro será acionado.

Cada linha, chamada de *ID* é independente, podendo ser configurados livremente os registros/El's utilizados em cada campo de cada *ID*.

Utilizando o Aplicativo WinSUP 2

Para configurar esse recurso, selecione a opção "*Habilita comparação de máximos e mínimos*", na guia "**Geral**" da janela *Configuração de Hardware*, e em seguida acione o botão **Opções** A seguinte janela será aberta:

Máximos e Mínimos							
ld	Efetivo	End. Mínimo	End. Máximo	El Mínimo	El Máximo		
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11						•	
				<u>o</u> k	<u>C</u> ancelar		

Fig. 76. - Comparação de máximos e mínimos

<u>Definição das colunas</u>

ID: Cada linha representa uma comparação de um efetivo a ser realizada. O número máximo de ID's disponíveis é de 76;

Efetivo: Este é o endereço do registro a ser comparado. Este endereço pode ser configurado pelo usuário, podendo ser utilizado qualquer registro livre do CLP;

End. Mínimo: Endereço do registro que deverá conter o valor mínimo a ser comparado com o efetivo. Este endereço pode ser configurado pelo usuário, podendo ser utilizado qualquer registro livre do CLP;

End. Máximo: Endereço do registro que deverá conter o valor máximo a ser comparado com o efetivo. Este endereço pode ser configurado pelo usuário, podendo ser utilizado qualquer registro livre do CLP;

El Mínimo: O El definido neste campo será acionado quando o valor do efetivo for menor ou igual ao valor contido no registro definido no campo *"End. Mínimo"*. Este endereço pode ser configurado pelo usuário, podendo ser utilizado qualquer Estado Interno livre do CLP;

El Máximo: O El definido neste campo será acionado quando o valor do efetivo for maior ou igual ao valor contido no registro definido no campo *"End. Máximo"*. Este endereço pode ser configurado pelo usuário, podendo ser utilizado qualquer Estado Interno livre do CLP;

Exemplo de utilização

Observe a configuração realizada na figura abaixo:

Máximos e Mínimos							
ld	Efetivo	End. Mínimo	End. Máximo	El Mínimo	El Máximo		
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11						-	
				<u>0</u> K	<u>C</u> ancelar		

Fig. 77. - Exemplo de comparação de máximos e mínimos

<u>ID1</u>

Utilizando os registros 800h, 900h e 902h respectivamente como efetivo, endereço de mínimo e endereço de máximo, e com os El's mínimo e máximo definidos como 180h e 181h, pode-se observar a seguinte representação:

Quando o conteúdo do registro efetivo (800h) for igual ou menor que o valor de mínimo (armazenado no registro 900h), o El 180h será acionado e o El 181 será desacionado;

Quando o conteúdo do registro efetivo (800h) for maior que o valor de mínimo (armazenado no registro 900h) e menor que o valor de máximo (armazenado no registro 902h), os El's 180h e 181h serão desacionados;

Quando o conteúdo do registro efetivo (800h) for igual ou maior que o valor de máximo (armazenado no registro 902h), o El 180h será desacionado e o El 181 será acionado;

Habilita Contador/Temporizador 33 a 48

Este recurso, disponível somente para CPU's dos drivers MPC4004R e MPC4004T, habilita a utilização de outros 16 contadores/temporizadores com retardo na energização, do módulo de processamento.

Utilizando o Aplicativo WinSUP 2

Para configurar esse recurso, selecione a opção "*Habilita contador/temporizador 33 a 48*", na guia "Geral" da janela *Configuração de Hardware*, e em seguida acione o botão **Opções.** A seguinte janela se abrirá:

Descrição dos campos

Preset: Definição do primeiro endereço de preset a ser utilizado. Todos os outros presets virão em seqüência.

Efetivo: Definição do primeiro endereço de efetivo a ser utilizado. Todos os outros efetivos virão em seqüência.

EI: Definição do primeiro EI a ser utilizado. Todos os outros EI's virão em seqüência.

Fig. 78. - Temp/Cnt 33 a 48

Observação: A configuração mostrada na figura acima é padrão toda vez que se abre a janela de opções pela primeira vez. Qualquer registro/El livre pode ser utilizado nestes campos, desde que existam registros/El's subsequentes suficientes para todos os temporizadores/contadores existentes.

Utilizando um temporizador no programa de usuário:

No exemplo a seguir, considere que os campos "*Preset*", "*Efetivo*", e "*El*" da configuração deste recurso tenham sido preenchidos com a configuração padrão montada pelo WinSUP 2 (ver figura acima).

Para inserir um bloco TMR ou CNT, há 3 modos diferentes:

1. Posicionar o cursor na linha em que se deseja inserir o bloco e pressionar a tecla <u>B</u>.

Na janela que se abre, selecionar o nome do bloco que deseja inserir (TMR ou CNT) e em seguida entrar com os El's correspondentes ao TMR/CNT que deseja utilizar.

Por exemplo: para utilizar o TMR/CNT nº 33, utilize o El 2F0h. Caso seja utilizado o El 2F1h, o TMR/CNT a ser utilizado será o nº 34, e assim por diante.

2. Posicionar o cursor onde deseja inserir o bloco. Na barra de ferramentas, selecionar o botão . Na janela que se abre, selecionar o bloco de saída que deseja inserir, e em seguida entrar com o El correspondente ao TMR/CNT que deseja utilizar, da mesma maneira como descrito no item 1.

3. Posicionar o cursor na linha em que deseja inserir o contato de saída. Dar um clique com o botão direito do mouse, e no menu que se abre, selecionar a opção *Inserir bloco de saída.*

Na janela que se abre, selecionar o nome do bloco que deseja inserir (TMR ou CNT) e em seguida entrar com os El correspondente ao TMR que se deseja utilizar,da mesma maneira como descrito no item 1.

Na linha ladder, os blocos TMR e CNT serão representados da seguinte maneira:

Programação On-Line

A opção "Programação On-line", recurso existente somente para CPU's do driver MPC4004T, permite realizar alterações no programa de usuário, sem a necessidade de passar o CP para o modo "Prog", evitando assim parar a máquina ou processo.

Atenção: Este recurso, deve ser utilizado com total cuidado e atenção por parte do usuário, pois alterações no programa feitas de forma indevida, podem causar danos ao operador ou a máquina / processo.

A ATOS se isenta de qualquer responsabilidade sobre danos causados pelo uso indevido deste recurso.

Recomendações:

Basicamente as alterações on-line devem ser entendidas como sendo "**pequenas alterações**", onde o usuário possui total controle de que não haverá risco ao processo ou a operadores, excluindo assim grandes alterações.

Alterações de maior complexidade devem ser tratadas como sendo alterações pertinentes a um "startup", onde condições são controladas e intertravamentos feitos para evitar operações indevidas durante a depuração da lógica.

Portanto a modificação on-line não deve ser entendida como um recurso de desenvolvimento da máquina ou processo, e sim um recurso para corrigir pequenos desvios em campo.

<u>Por motivos de segurança</u>, para habilitar a programação on-line o CLP deve estar conectado ao PC (não é necessário estar em modo supervisão). O envio de programa só é permitido se o programa do controlador for o mesmo aberto no aplicativo.

Feito isso, siga os seguintes passos:

1. No menu "Comunicação", posicione o mouse sobre a opção "Programação On-line";

2. Espere até a opção se expandir e escolha a opção "Habilita programação On-line", como mostrado abaixo:

3. Após esta etapa, o aplicativo fará uma verificação junto ao controlador se o programa no WinSUP é igual ao programa do CP, caso positivo as opções do menu serão habilitadas, caso contrário será mostrado a janela ao lado será apresentada:

WinSUP	×
O projeto do WinSUP não corre: ao projeto sendo executado no	sponde CLP
ОК	
Descrição do menu "Programação On-line":

<u>Enviar para o CLP</u>: Disponível também através de um atalho de teclado na barra de ferramentas do WinSUP, esta opção realiza o envio do programa de usuário alterado para o CLP;

<u>Restaurar programa Anterior</u>: Durante a programação on-line, o WinSUP permite recuperar a última modificação feita no CLP. O programa ainda está armazenado na memória do controlador, e selecionando-se esta opção ele passará a ser executado;

<u>Restaurar programa original</u>: Selecionando-se esta opção, o programa original gravado em memória FLASH será carregado no controlador e passará a ser executado. É importante observar que se a opção "confirmar programação on-line" foi selecionada em algum momento da programação on-line, o programa original passa a ser o último gravado em FLASH, e não o inicial à sua aplicação;

<u>Confirmar programação on-line</u>: Após realizar todas as alterações no controlador, selecione está opção para gravar o novo programa de usuário modificado em memória FLASH do CLP. Isso se deve ao fato do controlador estar trabalhando em memória RAM. Em caso de queda de energia, um procedimento padrão do controlador é carregar o programa de usuário (armazenado em memória FLASH) para a memória RAM. Se a programação on-line não for confirmada, em casos que o controlador for resetado, o programa de usuário será substituído pelo presente na memória FLASH, perdendo assim as alterações realizadas na programação on-line.

Importante: Não é permitido realizar nenhuma alteração na configuração de hardware do projeto. Ao fazer isso o WinSUP trava a opção de programação on-line, impossibilitando o envio do programa de usuário. Algumas instruções, por estarem vinculadas à configuração de hardware também não podem ser modificadas. São elas:

- AJUST
- CEP
- PSEUDO
- CTCPU
- PID
- FILT
- MED
- TXPR

6. Interfaces Homem Máquina (IHM)

As Interfaces Homem Máquina (IHM) são indispensáveis para garantir uma interação perfeita no controle automatizado. A **Atos** desenvolveu vários modelos de interfaces para operarem em conjunto com o controlador programável, possibilitando leitura, sinalização e mudança de parâmetros. Todas as mensagens, teclas de função, alarmes, edição e visualização de campos de dados são gerenciadas pelo processador principal, sem usar instruções de "Ladder".

<u>Observação:</u> As configurações e as descrições a seguir, aplicam-se as Interfaces (IHMs), independentemente de seu sufixo (terminação do código) se C ou SC.

Configuração

A configuração da IHM é feita através da guia "**IHM**" da janela *Configuração de Hardware.* Selecionar no WinSUP 2 o frontal utilizado da seguinte maneira:

IHM Atos	Opção do WinSUP 2
2002P95C, 2002P96C e 4004.90	LCD 2x20 com campos livres
4004G92, 4004P92, 4004P94C, 4004.95 e 4004P98C	LCD 4x20 com campos livres

• Descrição das Interfaces e Dimensões

Importante: Devido à diversidade de aplicações em que as IHMs (frontais) são utilizadas, elas são fornecidas sem o cabo de conexão, devendo o usuário solicitá-lo separadamente (*ver codificação página 189*).

Interface 2002P95C

A interface 2002P95C contém um display de cristal líquido composto por:

- 2 linhas de 20 caracteres
- teclado numérico
- 4 botões (tecla F) e 10 botões (tecla K) de uso geral
- 12 LED's de sinalização

Fig. 79.- Interface 2002P95C e suas dimensões

Interface 2002P96C

A interface 2002P96C (gabinete plástico) contém um display de cristal líquido composto por:

- 2 linhas de 20 caracteres
- teclado numérico
- 12 botões (tecla F) e 10 botões (tecla K) de uso geral
- 12 LED's de sinalização

Os terminais são fixados através de grampos laterais, que acompanham o produto. O rasgo para instalação é (L) 228,0 x (H) 142,0

Fig. 80.- Interface 2002P96C e suas dimensões

Observação: O frontal 2002P96C possui para as teclas "F's" uma bolsa para identificação da função.

Interface 4004.90C

A interface 4004.90C contém um display de cristal líquido (negativo) composto por:

- 2 linhas de 20 caracteres
- Teclado numérico
- 10 botões (tecla K) de uso geral
- 6 LED's de sinalização

Fig. 81. - Interface 4004.90C e suas dimensões

Interface 4004G92C

A interface 4004G92C contém um display de cristal líquido composto por:

- 4 linhas de 20 caracteres (display de dígito grande 9x5mm)
- teclado numérico
- 4 botões (tecla F) e 10 botões (tecla K) de uso geral
- 12 LED's de sinalização

Fig. 82.- Interface 4004G92C e suas dimensões

Interface 4004P92C

A interface 4004P92C contém um display de cristal líquido composto por:

- 4 linhas de 20 caracteres
- teclado numérico
- 4 botões (tecla F) e 10 botões (tecla K) de uso geral
- 12 LED's de sinalização

Interface 4004P94C

A interface 4004P94C contém um display de cristal líquido composto por:

- 4 linhas de 20 caracteres (display de dígito grande 9x5mm)
- teclado numérico
- 12 botões (tecla F) e 10 botões (tecla K) de uso geral
- 12 LED's de sinalização

Os terminais são fixados através de grampos laterais, que acompanham o produto. O rasgo para instalação é (L) 210,0 x (H) 160,0

Fig. 84.- Interface 4004P94C e suas dimensões

Interface 4004.95C

A interface 4004.95C contém um display de cristal líquido composto por:

- 4 linhas de 20 caracteres
- Teclado numérico
- 10 botões (tecla K) de uso geral
- 6 LED's de sinalização

Fig. 85.- Interface 4004.95C e suas dimensões

Interfaces 4004P98C

A interface 4004P98C contém um display de cristal líquido composto por:

- 4 linhas de 20 caracteres
- teclado numérico
- 12 botões (tecla F) e 10 botões (tecla K) de uso geral
- 12 LED's de sinalização

Os terminais são fixados através de grampos laterais, que acompanham o produto. O rasgo para instalação é (L) 210,0 x (H) 160,0

Fig. 86.- Interface **4004P98C** e suas dimensões

Cabos para as IHM's da série MPC4004

Importante: Devido à diversidade de aplicações em que as IHMs (frontais) são utilizadas, elas são fornecidas sem o cabo de conexão, devendo o usuário solicitá-lo separadamente (ver codificação abaixo).

Pela própria definição das interfaces, os sinais necessários para ativar as IHM's , são sinais paralelos, ou seja, existe um barramento de dados que trafega através do cabo, não tendo portanto a mesma performance dos sistemas seriais guanto ao comprimento dos cabos.

Desta forma, à distância considerada segura para as aplicações é de 1,0m, no entanto em algumas aplicações a distância de 1,0m não é possível de ser observada, em função de detalhes construtivos máquina/aplicação e o painel de operações. Visando aumentar a imunidade dos frontais em relação à EMI em aplicações com cabos acima de 1.0m, foram desenvolvidos cabos blindados e com ferrites nas extremidades.

Abaixo estão descritos os modelos de cabos disponíveis e suas respectivas descrições:

MODELO	DESCRIÇÃO
CAF20005	CABO FLAT SEM BLINDAGEM 20 VIAS COM 0,5m
CAF20010	CABO FLAT SEM BLINDAGEM 20 VIAS COM 1,0m
CMB20005	CABO MANGA BLINDADO 20 VIAS COM 0,5m
CMB20010	CABO MANGA BLINDADO 20 VIAS COM 1,0m
CMB20015	CABO MANGA BLINDADO 20 VIAS COM 1,5m
CMB20020	CABO MANGA BLINDADO 20 VIAS COM 2,0m

Descrição de Funcionamento das Interfaces Numéricas

As interfaces incorporam um conjunto de teclas, que visam agilizar as operações básicas de edição. Este conjunto também oferece teclas de funções dedicadas, tais como:

- auxílio manutenção
- senha
- arquivo de moldes.

e nos frontais correspondem às seguintes teclas:

AUXÍLIO MANUTENÇÃO

SENHA / ARQUIVO

ENTRA

EDITA

Telas de Edição

Para as telas de edição, após pressionar a tecla <EDITA>, o campo ficará piscando, podendo-se digitar diretamente através das teclas de 0 a 9.

A finalização da edição ocorre pressionando-se a tecla <ENTRA>.

Tecla de Auxílio à Manutenção

O acesso ao status dos estados internos ou registros do controlador programável é feito através da tecla **<AUXÍLIO À MANUTENÇÃO>**, bastando pressionar a tecla correspondente, e digitar o operando deseiado.

Para voltar à tela em que se estava, basta pressionar qualquer tecla que não seja de 0 a 9.

O acesso às teclas de A a F, é feito ativando-se a tecla <LOCK> (segunda função), onde os números de 1 a 6, passarão a acessar as letras de A a F respectivamente. Existe um LED específico, para indicar a ativação da segunda função das teclas.

Tecla de Bloqueio de Teclado

O bloqueio de teclado, tem por função, bloquear a edição de gualquer parâmetro da máguina, enquanto existir o status de bloqueio.

O acesso à função se dá, através da tecla correspondente, estando a tecla <LOCK> desligada.

Ao se acionar a tecla **SENHA**> aparecerá uma das seguintes mensagens:

	Ε	D	I	С	Α	0		В	L	0	Q	U	Ε	Α	D	Α	!	
	-	-	-	-	-	-	-	-		S	Ε	Ν	Η	Α		?		

	Ε	D	I	С	Α	0		Ρ	Ε	R	Μ	I	Т	I	D	Α	!	
	-	-	-	-	-	-	-	-		S	Ε	Ν	Η	Α		?		

O campo "------", fica neste momento preparado para aceitar a digitação de até 8 dígitos. A finalização da edição é feita através da tecla <ENTRA>.

Após a edição, caso a senha digitada esteja correta, serão mostradas as telas abaixo, onde houve a complementação do status de edição.

	S	Ε	Ν	Н	Α		۷	Α	L	I	D	Α		!				
	Ε	D	Ι	С	Α	0		Ρ	Ε	R	Μ	I	Т		D	Α	!	

OU

	S	Ε	Ν	Η	Α		V	Α	L	I	D	A		!				
	Ε	D	Ι	С	Α	0		В	L	0	Q	U	Ε	Α	D	Α	!	

A mensagem ficará ativa durante 2 segundos. Após este tempo haverá o retorno automático para a tela que se estava imediatamente antes de se acionar a tecla **SENHA>**.

Em ambos os casos, acionando-se qualquer tecla diferente de 0 a 9, o status de edição (bloqueado/liberado) não será alterado e retorna a tela que havia imediatamente antes de se acionar a tecla <SENHA>.

Caso a senha digitada esteja errada, será mostrada a mensagem:

	S	Ε	Ν	Η	Α	Ε	R	R	Α	D	Α		!			
	Т	Ε	Ν	Т	Ε	Ν	0	V	Α	Μ	Ε	Ν	Т	Ε	!	

Esta mensagem ficará ativa durante 2 segundos, retornando a tela de senha para nova edição.

A cada tentativa sem sucesso, o estado interno 0CF ficará ligado por uma varredura. Este estado interno, poderá ser associado a uma instrução de contagem, para monitoração do número de tentativas.

Durante a edição de valores, caso o status de edição esteja bloqueado, aparecerá na tela à mensagem:

	Ε	D	I	С	Α	0		В	L	0	Q	U	Ε	Α	D	A	!	
	-	-	-	-	-	-	-	-		S	Ε	Ν	Η	Α		?		

A partir deste ponto o funcionamento é como se tivesse acionado a tecla <SENHA>.

Importante: Se a função senha não esteja habilitada, será mostrada a mensagem abaixo, quando da ativação da tecla **<SENHA>**.

A habilitação da senha para edição é feita na configuração das telas.

		F	U	Ν	С	Α	0		S	Ε	Ν	Η	Α			
	Ν	A	0		Η	A	В	I	L	I	Т	A	D	A		

Utilizando o Aplicativo WinSUP 2

Para ativar habilitar a senha da IHM, é necessário definir o tipo de IHM utilizada no projeto, marcar a opção **"Habilita senha"** na guia **"Geral**" da guia "**IHM**", na janela *Configuração de Hardware*, como mostra a figura abaixo:

Configuração do projeto	
Geral Expansão IHM Background	l Print
Geral Teclas K Teclas F Alarmes	Receitas Telas
IHM O Nenhum	Mensagens de sistema Português
 LCD 2x20 com campos livres LCD 4x20 com campos livres 	Senha da IHM
O VFD 4x20 com campos livres	I I✓ Habilita senha

Fig. 87. - Definição da senha

Descrição do Funcionamento das Receitas via IHM (Arquivo de Moldes)

A RECEITA (arquivo de moldes) pode ser acessada através dos frontais **2002.95**, **2002.96**, **2002P96**, **2002.97**, **4004.94**, **4004.98**, **4004.99** ou através dos terminais de comunicação.

Para utilização com terminal, ver pseudo-instruções no manual do DWARE.

O acesso à função RECEITA para o frontal é feita através da tecla **<SENHA>**, estando com a tecla **<LOCK>** acionada.

Ao se acionar a tecla **<SENHA>**, aparecerá a mensagem mostrada abaixo:

					R	Ε	С	Ε	I	Т	Α							
S	1	-	Α	R	Μ	Α	Ζ			S	2	-	R	Ε	С	U	Ρ	

Se a escolha for **<S1>**, teremos a tela para armazenar parâmetros:

Μ	X	X	x	<	Α	R	Q	U	۷	0		Α	Т	U	Α	L
	-	-	-	<	Α	R	Q		Α	R	Μ	Α	Ζ			?

Se a escolha for **<S2>**, teremos a tela para recuperar parâmetros:

М	x	x	x	<	Α	R	Q	U	I	V	0		Α	Т	U	Α	L
	-	-	-	<	A	R	Q			R	Ε	С	U	Ρ			?

O campo xxx mostra o último molde recuperado.

O campo "---" fica neste momento preparado para aceitar a digitação do número do molde. O símbolo "M" (Modificado), ficará piscando toda vez que houver mudança de valores, através das telas de edição ou seletoras, que caracteriza mudança dos valores do molde atual. Após a escolha do número do molde, a finalização da operação é feita através da tecla **<ENTER>**. Para evitar operações inadequadas, existem telas auxiliares que serão mostradas nas seguintes situações:

■ arquivo digitado acima do permitido:

		V	Α	L	0	R	I	Ν	V	Α	L		D	0		!		
Α	R	Q	U	I	V	0	Μ	Α	Χ		Μ	0		=	X	X	х	

■ arquivo a ser recuperado inválido:

Α	R	Q	U	I	V	0	I	Ν	V	Α	L	I	D	0	!	

Existe um controle interno para determinar se uma gaveta contém dados válidos ou não. Caso o arquivo esteja "sujo", não será recuperado.

arquivo a ser armazenado já possui dados válidos.

		Α	R	Q	U	I	V	0	0	С	U	Ρ	Α	D	0	l		
S	I	Μ			С	0	Ν	Т	Ν	U	Α	R	?			Ν	Α	0

Neste caso o usuário será informado através da mensagem abaixo onde a efetivação da operação de guarda será feita digitando-se **<S1>** (SIM) ou o cancelamento através de **<S2>** (NAO).

Utilizando o Aplicativo WinSUP 2

Para habilitar as receitas via IHM, marque a opção **"Habilita receitas via IHM"**, na guia "**Receitas**" da guia "**IHM**" na janela *Configuração de Hardware*, como mostra a figura abaixo:

Config	juração d	o projeto				
Geral	Expans	ão IHM	Background	Print		
Gera	al Teclas	s K Teclas F	Alarmes	Receitas Telas	1	
	Segmento:	s				
	Id	Início	Fim		Número de receitas	Receitas possíveis
	1	FFFF	FFFF		256	
	2	FFFF	FFFF			
	3	FFFF	FFFF		Id Endereco inicial	Endereco final
	4	FFFF	FFFF			FFFF
	5	FFFF	FFFF			a l''''
	6	FFFF	FFFF			
	7	FFFF	FFFF			
	8	FFFF	FFFF		🔲 Habilita receitas via	IHM
				T		

Fig. 88. - Definição dos parâmetros das receitas

Exemplo:

O usuário pode definir até 8 regiões de memórias para serem usadas no arquivo de moldes.

400 - 41F 500 - 520 580 - 590 600 - 650 ETC

Não é obrigatório que sejam na mesma página, porém deve-se respeitar o limite de 512 bytes por segmento.

O WinSUP 2 determinará, em função do número de bytes e da região disponível para gavetas, a quantidade de moldes a serem usados.

Ó próprio controlador não permitirá operação acima do número de gavetas máximas.

• Descrição de Funcionamento dos Campos Livres

As IHM's além de oferecer as teclas de funções dedicadas: auxílio à manutenção, senha e arquivo de moldes, possibilita ao usuário programar os campos de maneira livre.

As telas para a nova configuração, assumirão o formato mostrado nos exemplos abaixo. Note que com a nova maneira de programação, o usuário não necessita explicitar o formato da tela (com ou sem campos).

As telas poderão conter as seguintes entidades, até um máximo de 15:

- Campo de edição de 1 a 8 dígitos
- Campo de visualização de 1 a 8 dígitos
- Campo de seletora de 1 a 9 posições
- Campo seletora liga/desl.
- Bargraph
- String

A posição física dos campos será definida através do usuário, respeitando os tamanhos préestabelecidos de cada campo.

A edição ocorrerá, quando a tecla **<EDITA>** for acionada para navegar entre campos.

Basta acionar novamente a tecla **<EDITA>** para que as modificações do campo anterior sejam automaticamente atualizadas.

A sinalização do campo em edição, é feita piscando o mesmo, e no caso da seletora liga/desliga, piscando o conjunto de parêntesis "("")".

		Α	Т	0	S		Α	U	Τ	0	Μ	Α	С	Α	0		
					L	С	D		4	Х	2	0					
Т	Ε	L	Α		2							Т	Ε	L	Α	3	

Exemplo	de	tela	de	texto	
---------	----	------	----	-------	--

	Ζ	0	Ν	Α			Ρ	R	Ε	S	Ε	Т		>	v1	v1	pd	v1	v1
	0	1					Ε	F	Ε	Т	I	V	0	>	v2	v2	pd	v2	v2
(L		G	Α	D	Α)			D	Ε	S	L	I	G		

Exemplo de tela com diversos campos

Bargraph - Permite ao usuário desenhar uma escala proporci	onal ao valor de um registro.
Estão associados ao bargraph os seguintes campos:	

Registro	Endereço que contém a variável
Tamanho	Número de barras que o usuário deseja (máximo 20)
Тіро	Desvio Contínuo
Tipo de Dado	BCD Binário
Valor Máximo	Valor no qual estará aceso o último caractere do bargraph
Valor Mínimo	Valor de offset para cálculo do bargraph

Abaixo temos o exemplo de dois tipos de bargraphs:

0		1		2		3		4		5		6		7		8		9	
-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-

Exemplo de Bargraph indicador de desvio

0		1		2		3		4		5		6		7		8		9	
ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	-	-	-	-	-	-	-	-

Exemplo de Bargraph contínuo

String - Permite ao usuário trocar mensagens sem ter a necessidade de trocar de tela. Cada mensagem está relacionada a um El ou valor de um registro:

Registro/El	Endereço que seleciona o string
Número de mensagens	Número de mensagens utilizadas (máximo 32)
Tamanho da mensagem	Tamanho máximo de cada mensagem (máximo 20)
Tipo da String	Normal ou Piscante
Texto	Mensagem definida pelo usuário

Funcionamento da Tecla Senha

A função senha é definida pelo usuário no WinSUP 2, em cada tela que possuir campos de Edição.

🔽 Senha para edição

O default do aplicativo WinSUP 2 é senha associada à tela. Caso não exista senha associada, a tela estará liberada para edição, mesmo que o status de senha esteja como sendo "bloqueado".

Importante: Existe apenas uma única senha para o frontal (ou seja para todas as telas existe somente uma senha de edição).

Utilizando o Aplicativo WinSUP 2

Para habilitar a senha para edição, deve-se estar no modo de edição das telas. Para fazer isso clique sobre a guia "**Telas**" da guia "**IHM**" na janela *Configuração de Hardware*, como mostra a figura abaixo:

Nr.	Descrição	Naveg, S1	S2	Senha	Bloco		<u>//</u>
	0 Sem programa	Não		Não	Intermediário	м	larcar
	1 Sem programa	Não		Não	Intermediário		
	2 Sem programa	Não		Não	Intermediário	_	
	3 Sem programa	Não		Não	Intermediário	C	opiar
	4 Sem programa	Não		Não	Intermediário		ra 🗌
	5 Sem programa	Não		Não	Intermediário		Colar
	6 Sem programa	Não		Não	Intermediário		
	7 Sem programa	Não		Não	Intermediário		20
	8 Sem programa	Não		Não	Intermediário	L	imp <u>a</u> r
	9 Sem programa	Não		Não	Intermediário		X I
1	0 Sem programa	Não		Não	Intermediário	E	xeluir
1	1 Sem programa	Não		Não	Intermediário		<u> </u>
1	2 Sem programa	Não		Não	Intermediário		* 1

Fig. 89.- Menu de configuração de telas

Estando com o cursor sobre qualquer tela e clicando sobre o botão "**Alterar**" entra-se no modo de edição de telas. Neste módulo pode-se alterar um campo já existente, copiar, mover, apagar, inserir um texto, tudo numa mesma tela.

Isto pode ser visto na tela exemplo abaixo, onde se tem uma tela com campos de edição, visualização, Bargraph, Liga/Desliga e texto:

🚟 Editor de telas para a IHM - Tela 0		×
ATOS AUTOMACAO	Desmarcar - F2 B Edição - F3	
(LIGA)(DESLIGA)	Visualiz F4 123	
S1 S2 Possui navegação Bloco	Seletora - F5 뎼 Liga/Desl F6	
🔲 Senha para edição 🛛 Intermediário 💽	E Preserve F7	
Identificação Modo Tela Exemplo Insert	String - F8	
OK Cancelar	A Texto - F9	

Fig. 90.- Tela com edição de campos

• Tela de Auxílio à Manutenção

O formato da tela no display é apresentado a seguir:

Α	U	X	I	L		0		Α	М	Α	Ν	U	Т	Ε	Ν	С	Α	0
R	E	G		S	Т	R	0		V	V	V			Y	Y	Y	Y	

Onde:

V dígitos pertencentes à edição do registro.

Y pode formar a palavra ON, OFF ou um valor de 4 dígitos.

Importante: O firmware coloca o texto da tela. Os únicos dígitos editáveis são os pertencentes ao registro.

O acesso ao auxílio à manutenção é feito diretamente através de tecla "Auxílio manutenção".

*

• Programação das Telas

Implementação de Valores Máximos nos Campos de Edição

Valores máximos para campos de edição de 4 dígitos são facilmente implementados no Controlador Programável **MPC4004**. O aplicativo WinSUP 2 prevê estes recursos.

Os tipos de telas que podem ter máximos associados a seus campos de edição são:

2 Campos de Edição (4 dígitos).

4 Campos de Edição (4 dígitos).

1 Campo de Visualização e 1 Campo de Edição (4 dígitos).

O **MPC4004** apresenta também recursos para identificar ao operador que um determinado valor de campo de edição ultrapassou o valor máximo permitido.

Toda digitação de valor em campo de edição associado com máximo é supervisionado no momento da ativação da tecla **<ENTRA>**.

Se em pelo menos um campo o valor digitado for superior ao máximo, será mostrada no display uma tela de "Erro Máximo", contendo o valor digitado e o valor máximo do campo, que é mostrada abaixo:

Ε	R	R	0		D	Ε			Ε	D	=	Χ	Χ	Χ	Χ
Μ	A	Χ	I	Μ	0	!		Μ	Α	Χ	=	Υ	Υ	Υ	Υ

Particularmente para telas de um campo de edição e um campo de visualização de 4 dígitos com máximo associado, além dos recursos acima descritos é possível configurar para que no campo de visualização seja automaticamente carregado o valor máximo associado.

Utilizando o Aplicativo WinSUP 2

Para habilitar os valores de máximo e mínimo de um campo de edição, deve-se estar no modo de edição das telas. Para fazer isso clique sobre a guia "**Telas**" da guia "**IHM**" na janela *Configuração de Hardware*. Insira um campo de edição e edite os campos "*Máximo*" e "*Mínimo*", como mostra a figura abaixo:

20	Edição
Desmarcar - F2	Registro Dígitos
8	0000 4 💌
Edição - F3	Ponto Tipo
æ	9999 💌 BCD 💌
Visualiz F4	Minima Minima
12 3	
Seletora - F5	1000
ត	Apresentação
Liga/Desl F6	Alinh. à direita 🔽
H	🗖 Do tipo senha
Bargraph - F7	
String - F8	
A	Identificação 2
Texto - F9	

Fig. 91.- Máximo e mínimo para campos de edição

Chave na Posição Prog

O debugador, existente somente nas CPU's dos driver MPC4004 e MPC4004L, é uma ferramenta de programação local, ou seja embutida dentro do próprio Controlador Programável. Para se ter acesso ao debugador basta mudar a chave do módulo básico da posição RUN para a posição PROG. Nesta condição, através do teclado é possível se ter acesso a todos os dados do controlador. Lembre-se que o debugador lhe dá acesso total ao mapeamento de memória (0000h a 6FFFh) do

Controlador Programável, sendo que operações inadequadas estão desprotegidas, portanto um erro de operação pode levar a dados irreparáveis em relação a programas editados.

Descrição das Funções

Existem 04 funções disponíveis, acessadas através das teclas F1 a F4:

- F1 mostra conteúdo de memória
- F2 procura dado na memória
- F3 carrega dado fixo
- F4 edita valor com incremento

Além das funções acima, a tecla "**Auxílio manutenção**" permite visualizar as taxas de comunicação e os números de máquina associados a cada canal serial.

Tela inicial do modo Debugador:

F	1	-	Μ	0	S	Т	R	Α	F	2	-	Ρ	R	0	С	U	R	Α
F	4	-	Ε	D	I	Т	Α		F	3	-	С	Α	R	R	Ε	G	Α

• Botoeiras e LED's presentes nas Interfaces

Os botões F1 a F12 e K0 a K9, presentes nas interfaces, podem ser utilizados como botoeira para acionar eventos durante um processo automatizado.

Quando um botão é ativado no frontal do MPC4004 o seu respectivo estado interno passa para ON. Os LED's do frontal serão acionados através de seu respectivo estado interno.

Importante: Os LED's funcionam independentemente dos botões.

Mapeamento de Memória

ENDEREÇO	DESCRIÇÃO	ENDEREÇO	DESCRIÇÃO	ENDEREÇO	DESCRIÇÃO	ENDEREÇO	DESCRIÇÃO
00B0	TECLA F1	00C0	LED 1				
00B1	TECLA F2	00C1	LED 2	00A0	TECLA K1		
00B2	TECLA F3	00C2	LED 3	00A1	TECLA K2		
00B3	TECLA F4	00C3	LED 4	00A2	TECLA K3		
00B4	TECLA F5	00C4	LED 5	00A3	TECLA K4	00AD	SETA P/ BAIXO
00B5	TECLA F6	00C5	LED 6	00A4	TECLA K5	00AC	SETA P/ CIMA
00B6	TECLA F7	00C6	LED 7	00A5	TECLA K6	00DD	TECLA S2
00B7	TECLA F8	00C7	LED 8	00A6	TECLA K7	00DC	TECLA S1
00B8	TECLA F9	00C8	LED 9	00A7	TECLA K8		
00B9	TECLA F10	00C9	LED 10	00A8	TECLA K9		
00BA	TECLA F11	00CA	LED 11	00A9	TECLA K0		
00BB	TECLA F12	00CB	LED 12				

• Alarmes

Para que até 64 telas apareçam piscando em caso de alarmes (estado interno associado acionado), poderão ser implementadas de maneira automática devendo o usuário apenas manusear sua configuração e alocar telas do tipo **"somente texto"** para as mensagens de alarme.

Um texto de alarme é automaticamente chamado, quando um estado interno a ele associado é acionado (ON). Neste caso, o texto correspondente aparece no display piscando com tempo de 0,5 s aceso e 0,5 s apagado. Os textos correspondentes vão alternadamente aparecendo no display caso existam mais de um estado interno acionado.

Qualquer acionamento de tecla interrompe o processo de indicação de alarme, por um tempo programado na configuração (time-out de telas de firmware) permitindo ao operador total acesso ao teclado.

Após este tempo, se não houver novo acionamento de teclas, e houver alarmes pendentes, estes tornarão a serem mostrados.

Importante: As telas de alarme têm prioridade sobre o estado 00DBh (apaga display), portanto mesmo com o estado 00DBh ativo, se houver estados de alarme ativo, as telas de alarme serão mostradas.

Um ou mais alarmes somente são mostrados se o time-out das telas de firmware tiver decorrido, portanto, um operador digitando valores tem assegurado a si a prioridade do teclado/display.

Se ocorrer um ou mais alarmes quando o teclado/display está na função "edita" (e houver decorrido o time-out das telas de firmware) os alarmes serão mostrados. Após cessar o alarme, o display retorna à tela de origem, ou seja, onde se estava editando um valor, porém com a edição desativada.

Há exceção para o caso de estar em tela de auxílio à manutenção. Nesta situação, não haverá o retorno à tela de alarme até se sair da tela de auxílio à manutenção.

Utilizando o Aplicativo WinSUP 2

A programação dos alarmes da IHM é feita, na guia "**Alarmes**" da guia "**IHM**" na janela *Configuração de Hardware*, como mostra a figura ao lado.

Configuração do projeto	
Geral Expansão IHM Background	d Print
Geral Teclas K Teclas F Alarmes	Receitas Telas
Endereço do primeiro El de alarme	Q
Número da primeira tela de alarme	0
Número de alarmes programados	0
Tempo de alarme ON (padrão 1.6s)	1.6
Tempo de alarme OFF (padrão 1.0s)	1.0
Timeout telas alarme (padrão 5.0s)	5.0

Procedimento

Digite o endereço do primeiro estado interno de alarme, o número da primeira tela de alarme e o número de alarmes programados. Pressione "**OK**" para atualizar todos os parâmetros e abandonar a janela.

A seqüência dos estados internos, que quando fechados colocarão o texto correspondente no display, é configurável através da alocação do primeiro estado interno. O conjunto de estados deverá estar na mesma página de estados internos.

A seqüência das telas associadas aos estados internos para serem chamadas no display, também é configurável através da alocação da primeira tela. As telas serão seqüenciais, ou seja, se o primeiro estado interno estiver associado à tela "n", o segundo estado interno estará associado à tela "n+1" e assim sucessivamente.

Fig. 92. - Alarmes da IHM

Estando novamente no menu configuração, na opção IHM pode-se programar o tempo de time-out das telas de firmware na opção programação.

As telas de firmware são as telas de mudança de alarmes. O time-out da tela de mudança de página é utilizado para manter esta tela por um determinado tempo no display. A cada acionamento de uma tecla, estando nessa tela, é reiniciado o tempo de time-out. Após o término deste tempo aparecerá no display à tela anterior a chamada. O funcionamento do time-out para as telas de alarmes foi descrito na visão geral.

7. Dimensões dos Bastidores da Série MPC4004

Os bastidores da série **MPC4004** são fixados na placa de montagem por parafusos. As dimensões são dadas abaixo:

Nº. Ranhuras	D (mm)	L (mm)	T(mm)					
2	27	37	91					
4	27	108	162					
6	27	178	232					
8	27	249	303					
10	64	249	373					
Profundidade	113 mm							

Fig. 93. - Dimensões dos módulos da série **MPC4004**

Os bastidores da série **MPC4004** devem ser instalados em superfícies planas verticais, sendo que a montagem deverá ser sempre feita na vertical para proporcionar ventilação.

Dimensões dos bastidores utilizados nos acessórios MPC4004

Nº. Ranhuras	T(mm)					
1	56					
Profundidade	113 mm					

Fig. 94. - Dimensões dos acessórios que utilizam bastidor de 1 passo.

8. Comunicação Serial

Cabos de Ligação para os Canais Seriais

A série **MPC4004** possui em seu módulo principal dois canais de comunicação serial, sendo o **canal A** em RS232 e **canal B** em RS485.

Os dois canais podem ser utilizados para programação do controlador ou monitoração/alteração ON-LINE de seus registros e estados internos.

O canal A por ser RS232, é mais prático para conexão com o computador, por não necessitar de conversor.

O canal B é indicado para criação de rede entre equipamentos MPC4004.

Importante: O recurso de "simulação de ângulo" faz com que os canais de comunicação tenham a mesma taxa de comunicação, sendo igual à taxa do **canal A** (RS232).

Cabo de Ligação em RS232 (PC ⇔ MPC4004)

Observação: O comprimento máximo do cabo para ligação do canal RS232 é de 15m.

Cabo de Ligação em RS485 (Rede para MPC4004)

Fig. 96. - Cabo com código Atos C4004DXXX.

Observação: O comprimento máximo do cabo para rede RS485 é de 1000m a 9600bps.

Ligando o MPC4004 a uma Rede:

Fig. 97. - Ligando o MPC4004 a uma rede RS485.

Os três últimos dígitos expressam o comprimento do cabo (alguns exemplos):

CABO	COMPRIMENTO [m]		
C4004D005	0,5		
C4004D050	5,0		
C4004D110	10,0		

Importante: para aplicações em rede, é recomendada a utilização do conversor 2232.00R , por possuir proteção contra descargas atmosféricas.

Características Elétricas do Cabo para Padrão RS485

- Bitola mínima dos condutores: 24 AWG
- 1 par trançado de condutores mais 1 condutor dreno em contato com fita de poliéster metalizada aplicada helicoidalmente sobre os pares trançados.
- Capacitância mútua do par trançado máx. 65pF/m
- Resistência de cada condutor máx. 98 Ohms/km
- Impedância característica (Z0) 1200hms

Importante: Os resistores de terminação (RT) são recomendados e devem ser instalados nas extremidades da rede. O valor dos resistores de terminação deverá estar próximo da impedância característica da linha de transmissão, variando entre 120 a 150 ohms (valores práticos e dependendo do número de receptores acoplados na linha). As dimensões físicas do cabo são irrelevantes para o cálculo dos resistores de terminação.

Cabo de Ligação em RS485 (a curta distância com o PC)

Fig. 99. - Ligando o MPC4004 a um PC através da RS485

Cabo de Ligação para RS485 com IHM Séries 1720.xy

Fig. 100. - Cabo com código Atos C4004DXXX

O cabo aconselhado para conexão entre o MPC4004 e uma IHM da série 1720.xy é o **C4004D___**(3 últimos dígitos informam o comprimento do cabo):

CABO	COMPRIMENTO [m]	
C4004D005	0,5	
C4004D050	5,0	
C4004D110	10,0	

Ligando o MPC4004 a uma IHM Séries 1720.xy:

Os dispositivos poderão ser ligados ao barramento (linear) obedecendo à topologia descrita na figura:

Importante: Para minimizar problemas com indução eletromagnética, é recomendável que se faça a interligação dos aterramentos (RS-485).

Observações:

1 - Durante a instalação, observe atentamente a polaridade dos sinais de dados (DO/RI e DO/RI).

2 - O uso da blindagem é absolutamente essencial para se obter alta imunidade contra interferências eletromagnéticas. A blindagem por sua vez deve ser conectada ao sistema de aterramento em ambos os lados através de bornes de aterramento adequados. Adicionalmente recomenda-se que os cabos de comunicação sejam mantidos separados dos cabos de alta voltagem.

Poderão ser conectados até 8 dispositivos (IHM + 7) em um mesmo segmento sendo necessária a terminação (através de um terminador ativo), no fim do barramento.

Cabo de Ligação para RS232 com Terminal Série 1755.xx

Fig. 102. - Cabo com código Atos C4004EXXX

Os três últimos dígitos expressam o comprimento do cabo (alguns exemplos):

CABO	COMPRIMENTO [m]	
C4004E002	0,2	
C4004E010	1,0	
C4004E110	10,0	

Cabo de Ligação em RS232 (MODEM ⇔ MPC4004)

Fig. 103. - Cabo de Ligação CMS232415 (RS232).

• Proteção Contra Descarga Eletromagnética

É recomendado que, em instalações onde há riscos de queda de raios, seja feito à proteção do link de comunicação serial como mostrado a seguir:

LINK EM RS485

Fig. 104. - Proteção do link de comunicação em RS485

Observação: O módulo 2232.00R é isolado opticamente.

LINK COM MODEM

Fig. 105. - Proteção do link de comunicação com modem

DETALHE DA PROTEÇÃO "P"

Fig. 106. - Detalhe da proteção "P"

A proteção "P" possui nível de grampeamento compatível com o sinal a ser protegido.

RS485:	6,8V
Modem:	150 V
Alimentação:	250 V

Utilizando a Instrução Print

A instrução Print para ser ativada, necessita que o estado interno **0FB** esteja ligado durante toda a transmissão.

O estado interno **0FC** fica ligado durante a transmissão do buffer especificado, servindo portanto para determinar quando um novo "Print" poderá ser enviado.

O estado interno **0BD** ligado, faz com que os dados sejam enviados pelo canal RS485, e quando desligado os dados são enviados pelo canal RS232.

Para a instrução Print, e para o escuta canal serial, é possível especificar se haverá a introdução de paridade na comunicação, podendo optar por **paridade Par** ou **ímpar**, e **número de bits** igual a **7** ou **8**.

Utilizando o Escuta Canal Serial

Para ativar o escuta canal serial é preciso: Estar com o estado 0FB ligado. Ligar o estado interno 0AB para receber caracteres. Definir através do estado 0BD, de qual canal serial os dados serão lidos

Ligado=RS485 Desligado=RS232

• Apr03 Modo Mestre

Para ativar o modo mestre do protocolo Apr03 é preciso declarar os frames de comunicação no menu "comunicação background" e ativar o estado interno **3D0**

<u>Observação</u>: Nesta condição os estados internos 3D1, 3D2... representarão falhas de comunicação com as estações

• Utilizando o Protocolo Modbus

Para ativar o modo escravo do protocolo ModBus basta ativar o estado interno 0BE.

Para ativar o **modo mestre do protocolo ModBus** é preciso declarar os frames de comunicação no menu "comunicação background" e ativar o estado interno **3D0** além do estado interno **0BE**. <u>**Observação**</u>: Nesta condição os estados internos 3D1, 3D2... representarão falhas de comunicação com as estações.

A taxa de comunicação para o protocolo Modbus é a mesma da instrução Print .

Importante: Os recursos descritos abaixo foram implementados a partir da memória básica **400402VA**:

- Escuta canal serial através do canal RS485
- Protocolo Modbus mestre e escravo
- Print e Escuta canal serial com a escolha de paridade e dados em 7 ou 8 bits

• Force

O recurso Force permite ao usuário alterar artificialmente, para ON ou OFF, o status de qualquer EI do controlador. É utilizado para analisar o efeito de um ou mais estados internos no programa de usuário, facilitando testes de simulação de diagramas lógicos em bancadas.

ATENÇÃO:

Toda passagem do modo RUN para o modo PROG provoca o desligamento dos estados não remanentes, o desligamento das saídas e a liberação dos estados que estavam forçados ("force").

O "force" é utilizado para analisar o efeito de um ou mais estados internos no programa de usuário, facilitando testes de simulação de diagramas lógicos em bancadas, sendo que estes estados internos podem ser forçados para ON ou para OFF no WinSUP 2 através do menu comunicação, comando supervisão de linhas. O "force" também pode ser usado "on-line", ou seja, com a máquina ou o processo real em funcionamento. Nesse caso, esta facilidade somente deve ser usada por programadores altamente conhecedores da máquina ou processo em questão, uma vez que é possível forçar estados que possam ser responsáveis pela segurança da máquina ou do operador

Utilizando o Aplicativo WinSUP 2

O force pode ser usado somente no modo de supervisão, para iniciá-la, existem dois modos diferentes:

- 1. No menu Comunicação, acesse a opção "Iniciar Supervisão".
- 2. Na barra de ferramentas, clique no botão. 💯

Utilizar o force através do menu "comunicação" opção "Force".

Dentro da janela "Force" clicar sobre o botão que se refere a condição desejada.

Fig. 107. - Force

O force será desativado a toda passagem do modo PROG para o modo RUN, ou quando o usuário sair do modo de supervisão.

Apêndice A – Autodiagnóstico

• Mensagens de Autodiagnóstico nas Interfaces (IHM)

Logo após a energização do MPC4004, será apresentada a mensagem do sistema, indicando o "status" do controlador. Veja a tabela a seguir:

MENSAGEM	DESCRIÇÃO		
"EPROM USUÁRIO OK MEMÓRIA NVRAM OK" ou "EPROM USUÁRIO OK MEMÓRIA RAM OK"	Todos os testes iniciais foram executados com sucesso, entrando o controlador em ciclo normal de trabalho.		
"ERRO MEMÓRIA NVRAM SISTEMA PARADO" ou "ERRO MEMÓRIA RAM SISTEMA PARADO"	Foi detectada uma falha na memória RAM/NVRAM do equipamento. O controlador não iniciará seu ciclo normal de trabalho. Solução: Enviar o equipamento para reparo.		
"EPROM USUÁRIO C/DEF SISTEMA PARADO"	Foi detectada falha de leitura na memória que armazena o programa de usuário. O controlador não iniciará seu ciclo normal de trabalho. Solução: Enviar o equipamento para reparo.		
"ERRO – USUARIO"	Foi encontrada uma instrução não válida. Solução: Verificar se o driver escolhido é compatível. Verificar versão da memória básica.		
"ERRO – PROG. INT1"	Foi encontrada uma instrução não válida no programa de interrupção 1. Solução: Verificar se o driver escolhido é compatível. Verificar versão da memória básica.		
"ERRO – PROG. INT2 "	Foi encontrada uma instrução não válida no programa de interrupção 2. Solução: Verificar se o driver escolhido é compatível. Verificar versão da memória básica.		
"BATERIA – NÃO OK"	Foi identificado um nível de bateria baixo. Os dados da memória RAM não são mais garantidos. Solução: Substituição da bateria.		
"ERRO MEMÓRIA FLASH"	Foi detectada uma falha na memória FLASH do equipamento. O controlador não iniciará seu ciclo normal de trabalho. Solução: Enviar o equipamento para reparo.		

Autodiagnóstico do LED de Status:

Quando o equipamento não apresenta falhas, no modo RUN, o LED de status piscará rapidamente (0,2seg. ON e 0,2seg. OFF).

A tabela abaixo mostra as indicações existentes na presença de alguma falha no equipamento:

MO	DELO	D INDICAÇÃO DO LED DE STATUS	
4004.01 4004.09 4004.12 4004.12/L 4004.06E	4004.02 4004.11 4004.11/L 4004.05E 4004.09E	Na presença de qualquer falha, n ON e 0,5seg. OFF).	o modo RUN, o LED piscará lentamente (0,5seg.
4004.05R 4004.09R 4004.06T	4004.06R 4004.05T 4004.09T	"BATERIA BAIXA" "ERRO MEMORIA RAM" "ERRO MEMORIA FLASH" "ERRO – USUARIO" "ERRO – INT1" "ERRO – INT2"	 3 piscadas a cada intervalo de 0,5 seg.; 4 piscadas a cada intervalo de 0,5 seg.; 5 piscadas a cada intervalo de 0,5 seg.; 6 piscadas a cada intervalo de 0,5 seg.; 7 piscadas a cada intervalo de 0,5 seg.; 8 piscadas a cada intervalo de 0,5 seg.;

No modo PROG, o LED sempre piscará lentamente.

Nota: o LED de status está presente no módulo de processamento e na IHM.

Importante

O cliente sempre deverá manter um backup atualizado dos programas criados, pois dependendo do tipo de reparo a ser executado, não é possível garantir o retorno do controlador com o mesmo programa de usuário, com que chegou, embora sejam adotados procedimentos para que isto ocorra.

Apêndice B – Resumo de Consumo dos Módulos

Este resumo visa disponibilizar informações sobre o consumo dos módulos da série MPC4004 para que a escolha do módulo de fonte seja compatível com o consumo dos módulos que compõem a aplicação.

Modele	Descrição	Consumo	Consumo	Consumo
Modelo		+5vcc	+12Vcc	-12Vcc
2002P95C	FRONTAL P/ MPC4004 2x20 LCD (frontal plástico / sem cabo)	151mA		
2002P95SC	FRONTAL P/ MPC4004 2x20 LCD (frontal plástico / sem FRD / sem cabo)	151mA		
2002P96C	FRONTAL P/ MPC4004 2x20 LCD (frontal plástico / sem cabo)	150mA		
2002P96SC	FRONTAL P/ MPC4004 2x20 LCD (frontal plástico / sem FRD / sem cabo)	150mA		
4004.01	CPU NVRAM 8E/8S "N" 24 Vcc	255mA		
4004.02	CPU NVRAM 8E/8S "P" 24 Vcc	255mA		
4004.05B	CPU XA RAM C/ BATERIA 8E/8S "N" 24 Vcc	245mA		
4004.05E	CPU XA RAM GOLD 8E/8S "N" 24 Vcc	250mA		
4004.05R	CPU XA RAM C/ BATERIA 8E/8S "N" 24 Vcc	260mA		
4004.05T	CPU XA RAM C/ BATERIA 8E/8S "N" 24 Vcc (Prog. On line)	280mA		
4004.06B	CPU XA RAM C/ BATERIA 8E/8S "P" 24 Vcc	245mA		
4004.06E	CPU XA RAM GOLD 8E/8S "P" 24 Vcc	250mA		
4004.06R	CPU XA RAM C/ BATERIA 8E/8S "P" 24 Vcc	260mA		
4004.06T	CPU XA RAM C/ BATERIA 8E/8S "P" 24 Vcc (Prog. On line)	280mA		
4004.09B	CPU XA RAM C/ BATERIA 8E "N/P" 24 Vcc / 8S RELE	300mA		
4004.09E	CPU XA RAM GOLD 8E "N/P" / 8S RELE	275mA		
4004.09R	CPU XA RAM C/ BATERIA 8E "N/P" 24 Vcc / 8S RELE	275mA		
4004.09T	CPU XA RAM C/ BATERIA 8E "N/P" 24 Vcc / 8S RELE (Prog. On Line)	280mA		
4004.11	CPU RAM GOLD 8E/8S "N" 24 Vcc	265mA		
4004.11/L	CPU RAM GOLD 8E/8S "N" 24 Vcc	195mA		
4004.12	CPU RAM GOLD 8E/8S "P" 24 Vcc	265mA		
4004.12/L	CPU RAM GOLD 8E/8S "P" 24 Vcc	195mA		
4004.31	EXPANSÃO COM 16S 24VCC "N"	90mA		
4004.31G	EXPANSÃO COM 16S 24VCC "N"	85mA		
4004.31H	EXPANSÃO COM 16S 24VCC "N" (Troca a Quente)	90mA		
4004.32	EXPANSÃO DIGITAL 16S "P" 24Vcc	90mA		
4004.32G	EXPANSÃO DIGITAL 16S "P" 24Vcc	85mA		
4004.32H	EXPANSÃO DIGITAL 16S "P" 24Vcc (Troca a Quente)	90mA		
4004.33	EXPANSÃO DIGITAL 16E "N" 24Vcc	15mA		
4004.33G	EXPANSÃO DIGITAL 16E "N" 24Vcc	35mA		
4004.33H	EXPANSAO DIGITAL 16E "N" 24Vcc (Troca a Quente)	90mA		
4004.34	EXPANSAO DIGITAL 16E "P" 24Vcc	15mA		
4004.34G	EXPANSAO DIGITAL 16E "P" 24Vcc	35mA		
4004.35	EXPANSAO DIGITAL 8E 110 Vca	120mA		
4004.35/A	EXPANSÃO DIGITAL 8E 220 Vca	30mA		
4004.37	EXPANSÃO DIGITAL 8S RELE	70mA		
4004.38G	EXPANSÃO DIGITAL 8E "N/P" 24Vcc	30mA		
4004.39	EXPANSAO DIGITAL 8S TRIAC 90 a 240 Vca	70mA		
4004.45		170mA		
4004.51	EXPANSÃO DIGITAL 8E/8S "N" 24 VCC	50mA		
4004.52		50mA		
4004.53		100mA		
4004.53G	EXPANSÃO DIGITAL 10E/105 IN 24 VCC	120mA		
3003.33H		120mA		
4004.54		120mA		
4004.540	EXPANSÃO DIGITAL 10E/103 P 24 VCC EXPANSÃO DIGITAL 16E "D" ou "N" /165 "D" 24 \/os (Troos a Ouesta)	120MA		
4004.541		30mA		
-0000		JOINA		

Modelo	Descrição	Consumo	Consumo	Consumo
4004 55G		70mA	. 12000	12100
4004.55H	EXPANSÃO DIGITAL 32E "P" ou "N" 24 Vcc (Troca a Quente)	120mA		
4004.56	EXPANSÃO DIGITAL 32E "P" 24 Vcc	30mA		
4004.56G	EXPANSÃO DIGITAL 32E "P" 24 Vcc	70mA		
4004.57	EXPANSÃO DIGITAL 8E "N/P" 24 Vcc / 8S RELE	50mA		
4004.58G	EXPANSÃO DIGITAL 16E "N/P" 24Vcc / 16S RELE	110mA		
4004.60	EXPANSÃO ANALÓGICA 2E (TENSÃO ou CORRENTE) e 2S (TENSÃO)	10mA	50mA	50mA
4004.60/A	EXPANSÃO ANALÓGICA 2E (TENSÃO ou CORRENTE) e 2S (CORRENTE)	10mA	85mA	40mA
4004.60N	EXPANSÃO ANALÓGICA 2E (TENSÃO ou CORRENTE) e 2S (TENSÃO)	25mA	75mA	50mA
4004.61	EXPANSÃO ANALÓGICA 4E (TENSÃO ou CORRENTE) e 4S (TENSÃO)	30mA	50mA	60mA
4004.61/A	EXPANSÃO ANALÓGICA 4E (TENSÃO ou CORRENTE) e 4S (CORRENTE)	10mA	125mA	60mA
4004.61N	EXP. ANALÓG. 4E(TENSÃO/CORRENTE) 4S(TENSÃO) 0~10Vcc / +/- 10 Vcc	25mA	85mA	60mA
4004.62G	EXPANSÃO ANALÓGICA 8E (TENSÃO ou CORRENTE) 0~10Vcc / 0~20 mA	5mA	35mA	35mA
4004.62P	EXPANSÃO ANALÓGICA 4E (TENSÃO ou CORRENTE) 0~10Vcc / 0~20 mA	5mA	30mA	35mA
4004.63G	EXPANSÃO ANALÓGICA 8S (TENSÃO) 0~10 Vcc	2mA	35mA	30mA
4004.63P	EXPANSÃO ANALÓGICA 4S (TENSÃO) 0~10 Vcc	2mA	30mA	30mA
4004.64G	EXPANSÃO ANALÓGICA 8S (CORRENTE) 0~20 mA	2mA	215mA	45mA
4004.64P	EXPANSÃO ANALÓGICA 4S (CORRENTE) 0~20 mA	2mA	120mA	30mA
4004.65/J	EXPANSÃO TEMPERATURA 4 CANAIS TIPO "J"	1mA	15mA	25mA
4004.65/K	EXPANSÃO TEMPERATURA 4 CANAIS TIPO "K"	1mA	15mA	25mA
4004.66/J	EXPANSÃO TEMPERATURA 8 CANAIS TIPO "J"	1mA	15mA	25mA
4004.66/K	EXPANSÃO TEMPERATURA 8 CANAIS TIPO "K"	1mA	15mA	25mA
4004.70	EXPANSÃO DIGITAL BOTÕES E SINALIZAÇÃO POR LED's	100mA		
4004.71R	MÓDULO CONVERSOR ISOLADO RS232 / RS485 c/ PROTEÇÃO	30mA	75mA	75mA
4004.72	SLAVE DE COMUNICAÇÃO 2X RS485 APR03 ESCRAVO	150mA		
4004.72R	SLAVE DE COMUNICAÇÃO 2X RS485 APR03 MESTRE / ESCRAVO	100mA		
4004.72D	SLAVE DE COMUNICAÇÃO DEVICE NET	200mA		
4004.72E	SLAVE DE COMUNICAÇÃO ETHERNET	200mA		
4004.72M	SLAVE DE COMUNICAÇÃO 2X RS485 MODBUS RTU MESTRE / ESCRAVO	100mA		
4004.72MP	SLAVE DE COMUNICAÇÃO MESTRE PROFIBUS-DP	240mA		
4004.72P	SLAVE DE COMUNICAÇÃO PROFIBUS-DP	240mA		
4004.73	MODULO AMPLIFICADOR PARA VALVULA PROPORCIONAL 4 CANAIS	200mA		
4004.73M	MODULO AMPLIFICADOR PARA VALVULA PROPORCIONAL 2 CANAIS	200mA		
4004.74		180mA		
4004.75/P	EXPANSAU TEMPERATURA 4 CANAIS PT100 / 3 FIOS 0~200 °C	10mA	60mA	55MA
4004.75P1	EXPANSAU TEMPERATURA 4 CANAIS PT100 / 3 FIOS -50~50 °C	10mA	60mA	55MA
4004.75P2	EXPANSAU TEMPERATURA 4 CANAIS PT100 / 3 FIOS -50~150 C	10mA	60mA	Amee
4004.70/F	EXPANSÃO TEMPERATURA 8 CANAIS PT100/3 FIOS 0~200 C	10mA	100mA	90MA
4004.70F1	EXPANSÃO TEMPERATURA 8 CANAIS PT100/3 FIOS -50~50 C	10mA	100mA	90MA
4004.76F2	EXPANSAO TEMPERATURA 8 CANAIS FT1007 3 F103 -50~150 C	10mA	70mA	9011A
4004.8502	EXP. TEMP 4 CANAIS PT100 / 3 FIOS "-200 C + 4EA 0-10V 00 0-2011A	10mA	70mA	65mA
4004.03F2		25mA	100mA	80mA
4004.879 1		25mA	30mA	30mA
4004.0704	FRONTAL P/ MPC4004 2x20 CD NFGATIVO (frontal plactice / sem cabo)	220mA		
-00300	FRONTAL P/ MPC4004 2x20 LOD NEGATIVO (Itolital plastico / sem ERD /	2201174		
4004.90SC	sem cabo)	220mA		
40040000	FRONTAL P/ MPC4004 4x20 LCD display de dígito grande 9x5mm (frontal	050 1		
4004G92C	plástico / sem cabo)	350MA		
4004G92SC	FRONTAL P/ MPC4004 4x20 LCD display de dígito grande 9x5mm (frontal plástico / sem FRD / sem cabo)	350mA	 	
-----------	--	-------	------	
4004P92C	FRONTAL P/ MPC4004 4x20 LCD (frontal plástico / sem cabo)	150mA	 	
4004P92SC	FRONTAL P/ MPC4004 4x20 LCD (frontal plástico / sem FRD / sem cabo)	150mA	 	
4004.P94C	FRONTAL P/ MPC4004 4x20 LCD -display de dígito grande 9x5mm - (sem cabo)	500mA	 	
4004.94SC	FRONTAL P/ MPC4004 4x20 LCD -display de dígito grande 9x5mm - (sem FRD / sem cabo)	500mA	 	
4004.95C	FRONTAL P/ MPC4004 4x20 LCD (frontal plástico / sem cabo)	110mA	 	
4004.95SC	FRONTAL P/ MPC4004 4x20 LCD (frontal plástico / sem FRD / sem cabo)	110mA	 	
4004.P98C	FRONTAL P/ MPC4004 4x20 LCD (sem cabo)	150mA	 	
4004.98SC	FRONTAL P/ MPC4004 4x20 LCD (sem FRD / sem cabo)	150mA	 	

Disponibilidade de Corrente das Fontes de Alimentação

MODELO	TIPO DE ALIMENTAÇÃO	+5Vcc	+12Vcc	-12Vcc	24Vcc
4004.40	chaveada 90 a 253Vca	1500mA	500mA	500mA	500mA
4004.40/A	chaveada 9 a 36Vcc	1500mA	500mA	500mA	
4004.40/D ⁽²⁾	chaveada 36 a 60Vcc	1000mA	250mA	250mA	500mA
4004.40/F ⁽¹⁾	chaveada 90 a 253Vca	1500mA			
4004.40/G	chaveada 18 a 60Vcc	1000mA	250mA	250mA	500mA
4004.40/R	chaveada 90 a 253Vca	3000mA	1000mA	500mA	500mA

(1) - Não pode ser utilizado em aplicações que utilizam módulos analógicos (entradas, saídas e temperaturas);
 (2) - Módulo obsoleto.

Observações

O consumo dos módulos de **saídas digitais** foi medido com todas as saídas acionadas, tendo um consumo de 6mA na alimentação de +5Vcc por saída.

O consumo dos módulos de **saídas analógicas em corrente** foi medido com todas as saídas fornecendo 20mA ; Esta corrente é fornecida pela alimentação de + / - 12Vcc.

A aplicação de um fator de redução da corrente máxima consumida , em função de não se considerar a possibilidade de todas as saídas digitais ou analógicas em corrente, serem acionadas simultaneamente, fica condicionado ao tipo de aplicação.

Importante: Não deve ser aplicado nenhum fator de redução na alimentação +5Vcc para os módulos analógicos.

Apêndice C - Histórico dos Firmwares

	HISTÓRICO DOS FIRMWARES					
MÓDULOS	FIRMWARE	DATA	MEMÓRIA	ALTERAÇÕES/OBSERVAÇÕES		
	400401V0	30/08/97	27C512-10	- Firmware inicial		
	400401V1	06/10/97	27C512-10	 liberação do WDT status dos canais de comunicação no modo PROG (tecla, auxilio a manutenção) 		
	400402V0	30/01/98	27C512-10	 simulador de ângulo liberado até 180 rpm implementação da instrução SCL implementação do contador rápido (4004.87) 		
	400402V1	04/05/98	27C512-10	 implementação dos canais 9 a 16 de E/S analógica implementação de instruções de 32 bits DVBLL, MULBL, SUMBL, SUBBL, CONVL e SHIFL implementação da instrução SCL2G 		
	400402V2	29/06/98	27C512-10	- estados internos 00E1h e 00E9h (Load Setpoint Inicial dos Contadores Rápidos 1 e 2) sensível a nível.		
	400402V3	18/08/98	27C512-10	 definido mesma prioridade para o Contador Rápido (presente no Módulo de Processamento) e Interrupção I. 		
	400402V4	04/01/99	27C512-10	- criação dos blocos PID - introdução dos Módulos Analógicos Compactos (MAC)		
4004.01 4004.02 4004.11 4004.12	400402V5	20/04/99	27C512-10	 implementação das instruções: BCDAP – converte BCD→ASC com ponto decimal CCS – calcula CHECK SUM TXPR – gerenciador de blocos para print. 		
	400402V6	05/08/99	27C512-10	 Implementação do modo motor de passo. Implementação do modo de leitura de caracteres através do canal RS232 Implementação do modo mestre no canal RS485 		
	400402V7	19/01/00	27C512-10	 Implementação das rotinas SDAT2 e LDAT2. Adequação do termo derivativo Aumento de 04 p/ 08 ângulos atualizados na INT2 Alterado STIME c/ teste de consistência dos dados de entrada c/ E.I. OFF p/ Erro 		
	400402V8	28/09/00	64Kx8 100nS	 Correção do multiplex (acionava LED's invertidos) Configuração para PRINT c/ paridade no 8° ou 9° BIT Escuta rede na RS485 Inclusão das rotinas do Modbus c/ 1 ou 2 Stopbits Baud Rate do Modbus c/ a mesma do PRINT Inclusão da Opção de paridade no PRINT – SEM, PAR OU IMPAR 		

		HISTÓRICO DOS FIRMWARES					
MÓDULOS	FIRMWARE	DATA	MEMÓRIA	ALTERAÇÕES/OBSERVAÇÕES			
	400402V9	12/02/01	64Kx8 100nS	- Trigger 1segundo - Broadcast no APR03 mestre/slave RS485 - El de sinal analógica ±10V			
4004.01 4004.02 4004.11 4004.12	400402VA	21/03/01	64Kx8 100nS	 Broadcast no APR03 mestre/slave RS485 El de sinal analógica ±10V Broadcast no APR03 slave RS232 Rotinas para 4004.90 e 4004.95 Limpa Force dos Eis 1 pág. por varredura 			
	400402VB	09/05/01	64Kx8 100nS	 Troca do endereço do rascunho do trigger de 1seg. Conflito c/ contador do escuta rede. Correção do campo ASCII. Permite a visualização dos zeros à esquerda. 			
	400402VC	09/10/01	64Kx8 100nS	 Correção de registros compartilhados pelas instruções DVBLL e Fator; Intertravamento da saída analógica imediata na Int.; Inclusão das mensagens de firmware em inglês. 			
	400402VD	12/12/02	64Kx8 100nS	 Implementação do protocolo Modbus escravo na RS232. El 0x022 Habilita; Implementação dos El's 0x0AC (seta para cima) e 0x0AD (seta para baixo); Alterado Background para verificação do número da estação no timer; Implementação da leitura de 16 entradas digitais na CPU; Criada a opção "Hablita Estados Internos 0x022 a 0x02F para uso do sistema". 			
	400402VE	13/11/03	64Kx8 100nS	- Correção da instrução TXPR.			

HISTÓRICO DOS FIRMWARES						
MÓDULOS	FIRMWARE	DATA	MEMÓRIA	ALTERAÇÕES/OBSERVAÇÕES		
	400402KC	09/10/01	64Kx8 100nS	- Implementação de tabela p/ termopar tipo "K"		
4004.01 4004.02 4004.11 4004.12	400402KD	12/12/02	64Kx8 100nS	 Implementação do protocolo Modbus escravo na RS232. El 0x022 Habilita; Implementação dos El's 0x0AC (seta para cima) e 0x0AD (seta para baixo); Alterado Background para verificação do número da estação no timer; Implementação da leitura de 16 entradas digitais na CPU; Criada a opção "Hablita Estados Internos 0x022 a 0x02F para uso do sistema". 		
	400402KE	13/11/03	64Kx8 100nS	- Correção da instrução TXPR.		

HISTÓRICO DOS FIRMWARES						
MÓDULOS	FIRMWARE	DATA	MEMÓRIA	ALTERAÇÕES/OBSERVAÇÕES		
	400403V0	12/02/01	27C512-10	- Firmware inicial		
	400403V1	09/08/99	27C512-10	- Implementação do número de dígitos variável para os campos 1ED/1VIS e 2ED		
	400403V2	08/01/01	64Kx8 100nS	- Implementação da Flash SST29EE512.		
4004.11/L 4004.12/L	400403V3	29/03/01	64Kx8 100nS	 Implementação do frontal 4004.90; Implementação do trigger de 1 segundo. 		
	400403V4	29/03/01	64Kx8 100nS	 Implementação do WDT; Acerto dos tempos para LCD – CCT; Correção do EI de S1 e S2. 		
	400403V5	17/08/01	64Kx8 100nS	 Implementação no frontal 2002.90 do auto incremento no S1/S2; Correção da chamada no modo PROG da rotina "carrega dado fixo". 		

HISTÓRICO DOS FIRMWARES					
MÓDULOS	FIRMWARE	DATA	MEMÓRIA	ALTERAÇÕES/OBSERVAÇÕES	
	400406V0	19/09/00	64Kx8 100nS	- Firmware Inicial	
	400406V1	18/01/01	64Kx8 100nS	 Escuta rede na RS485 Inclusão do Modbus mestre/escravo Inclusão da Opção de paridade no PRINT – sem, PAR ou IMPAR Inclusão da slave de comunicação (INT II) Inclusão do módulo de 32E El de trigger 1segundo Broadcast no APR03 mestre/slave RS485 El de sinal analógica ±10V 	
	400406V2	16/05/01	64Kx8 100nS	 Correção da rotina do contador rápido modo normal que influenciava a leitura das entradas 0100 a 0107. 	
4004.05B 4004.06B 4004.09B 4004.05E 4004.06E 4004.09E	400406V3	08/08/01	64Kx8 100nS	 Inclusão da possibilidade de ter várias slaves. Inclusão do broadcast para modo mestre. Inclusão do limpa force, uma pág. Por varredura. Inclusão dos frontais 4004.90 e 4004.95 Correção do campo ASCII, mostrar zeros a esquerda. Correção das rotinas do frontal para VFD. 	
	400406V4	18/02/02	64Kx8 100nS	 Implementação dos EI's 0xAC (seta p/ cima) e 0xAD (seta p/ baixo); Correção Modbus x Print (Print não funciona se Modbus ativo); Prioridades: - Mestre; Print; APR03 / Modbus; Forçado no modo de programação o APR03; Corrigido contador modo ângulo que não contava com o print; Corrigido no print o desligamento do El 00FC se 00FB=Off. 	

HISTÓRICO DOS FIRMWARES				
MÓDULOS	FIRMWARE	DATA	MEMÓRIA	ALTERAÇÕES/OBSERVAÇÕES
4004.05B 4004.06B 4004.09B 4004.05E 4004.06E 4004.09E	400406V5	29/05/03	64Kx8 100nS	Para a versão 4004065F de 11/11/02: -Corrigido falta de limpeza de flags modo mestre, se inicialização com chave na posição PROG; -Implementado nome do programa de usuário na RAM - FCC0 a FCCF para acesso ao usuário; -Criação da instrução CNT2; -Criação da instrução FILT - A cada novo valor da amostra entra na pilha descarta o mais antigo, classifica e coloca o valor da amostra central na variável de saída. Criado flags de identificação do ploint1 e ploint2 para uso simultâneo da instrução nos 3 programas possíveis; -Criação da instrução ASCB; -Alteração na pseudo instrução GAV; -Correção ModBus: Alterado o range de endereços para registros no ModBus de Offf para 0e7ff Testar numero da estação na pergunta na Interrupção do TIMER 0 Correção da rotina de falhas no modo mestre No modo Mestre, esperar time-out -Criação da instrução SCRLL -Inclusão das mensagens de firmware em Inglês -> equate inglês; -Aumento da lifo de programa de usuário para 5 bytes; -Alteração da seletora, liga o estado 0xFE quando volta para posição 0; Para a versão 4004065G de 18/02/03: -Implementado controle de bateria para CPU's: 4004.05/B, 4004.06/B e 4004.09/B -Corrigido possibilidade de Modbus na RS485 se mestre na RS232; -Nova adequação da instrução FILT com mudança de OPCODE de 97 para FB (compatibilidade com DALLAS) -Criação da instrução SFRW (OPCODE = BD)
	400406V6	18/12/03	64Kx8 100nS	 Correção em rotina de escrita em slaves. Havia a possibilidade da slave interpretar incorretamente se ocorresse uma interrupção em determinado ponto da rotina.
	400406V7	23/01/04	64Kx8 100nS	Correção na sequência de inicialização: Esta correção elimina a possibilidade da CPU "travar", na condição onde é utilizado o encoder modo normal com a entrada digital E102 acionada durante a inicialização.

HISTÓRICO DOS FIRMWARES						
MÓDULOS	FIRMWARE	DATA	MEMÓRIA	ALTERAÇÕES/OBSERVAÇÕES		
4004.05B 4004.06B 4004.09B	400406V8	04/06/04	64Kx8 100nS	 Correção do incremento involuntário de uma unidade no contador rápido presente na CPU após energização; Correção de erro na inicialização dos contadores rápidos (4004.87). Após energização efetivos eram zerados. 		
4004.09B 4004.05E 4004.06E 4004.09E	400406V9	12/07/04	64Kx8 100nS	 Correção da perda do status do El de sinal (4004.87) na inicialização; Inclusão das rotinas para associar El com botões LOCK 0x24; ENTRA = 0x25; EDITA = 0x26, se "Habilita El´s 022 a 02F para uso do sistema" estiver configurado. 		

HISTÓRICO DOS FIRMWARES				
MÓDULOS	FIRMWARE	DATA	MEMÓRIA	ALTERAÇÕES/OBSERVAÇÕES
	400408V0	14/03/03	64Kx8 70nS	- Firmware Inicial
	400408V1	10/07/03	64Kx8 70nS	 Correção do Monoa para o Load e Reset da 400487SA; Correção da função 06 do Modbus modo escravo; Correção da instruções Ajust na Int2; Correção das instruções Bcdap e Bcdas para dados acima de 09; Correção no cálculo da integral do Pid; Correção na habilitação das teclas K; Correção da Receita via frontal para recuperar receitas acima de 127; Correção dos CSs de leitura de teclas e botões para não serem atualizados na ausência do frontal; Implementação do teste de falha no Modbus até máquina 31; Inclusão de delay para iniciar a gravação da Flash (este dalay é necessário quando o tamanho do programa de usuário for maior que 15Kbytes); Implementação de um delay de 1ms antes de iniciar a gravação da flash para um número menor que 1.
	400408V2	01/09/03	64Kx8 70nS	 Implementação da instrução Sched – Schedule; Alterado o número de alarmes de64 para 128; Correção – as teclas K no 4004.90 não eram lidas.
4004.05R 4004.06R 4004.09R	400408V3	11/12/03	64Kx8 70nS	 Implementação das rotinas para gerar driver de motor de passo – saída 0180; Implementação do teste do range de Els 0x0000 – 0x03FF e 0xE000 – 0xEFFF na comunicação. Se não for o SUP, escrever somente no bit0 quando for estado interno; Correção da atualização das saídas digitais X07 a X0F na Intl. Estava lendo o El errado; Correção da atualização do saídas digitais X07 a X0F na Intll. Estava lendo o El errado; Melhoria na inicialização do LCD; Correção da Pseudo instrução Gav.
	400408V4	19/03/04	64Kx8 70nS	 Implementação da Instrução PID_I - Bloco PID padrão ISA Implementação da instrução DINT1 - Desabilita Interrupção I Implementação da instrução FTAB - Move constantes em ponto flutuante para uma tabela Implementação da leitura dos efetivos das analógicas e temperaturas na inicialização Correção do modo ângulo Correção das rotinas de Comparação automática de registros Correção das rotinas de Movimentação de dados através de El
	400408V5	12/07/04	64Kx8 70nS	 Correção da rotina que carrega o efetivo no modulo de contagem rápida (4004.87) na inicialização; Correção da rotina de contagem rápida da CPU. Na inicialização gerava um pulso de contagem; Inclusão das rotinas para associar El com botão LOCK = 0x24; ENTRA = 0x25; EDITA = 0x26; Correção da rotina da placa bipolar. Não estava colocando 0V nas saídas da 4004.6XN quando era tratada como não bipolar;

4004.05R 4004.06R 4004.09R	400408V6	11/10/04	64Kx8 70nS	 Correção da limpeza dos estados internos remanentes; Inclusão da rotina para desligar o 0x00F6 toda varredura; Inclusão da rotina para ligar o 0x00F7 toda varredura; Correção da prioridade nos vetores de interrupção das interrupções de software; Correção da SCL. Incluido o flag de overflow 0x00FF para o calculo de b; Correção da rotina de atualização das Analógicas; Alteração das rotinas de comunicação: Implementação da senha do SUP por canal de comunicação; Implementação do seguimento de comunicação por canal de comunicação;
	400408V7	18/10/04	64Kx8 70nS	 Correção no modulo de comunicação ModBus mestre e escravo;
	400408V8	29/10/04	64Kx8 70nS	 Correção na rotina de decodificação da resposta no ModBus mestre, com a implementação de trava no número de bytes; Correção na instrução BMOVX. implementada uma trava no destino. 0x0000 < X < 0xEFFFF.

HISTÓRICO DOS FIRMWARES					
MÓDULOS	FIRMWARE	DATA	MEMÓRIA	ALTERAÇÕES/OBSERVAÇÕES	
	400409V0	06/02/04	64Kx8 70nS	- Firmware Inicial	
	400409V1	12/07/04	64Kx8 70nS	 Correção da rotina que carrega o efetivo no modulo de contagem rápida (4004.87) na inicialização; Correção da rotina de contagem rápida da CPU. Na inicialização gerava um pulso de contagem; Inclusão das rotinas para tratar placas de troca a quente nas interrupções; Inclusão das rotinas para associar El com botão LOCK = 0x24; ENTRA = 0x25; EDITA = 0x26; Inclusão do El para monitorar a ausência de uma placa troca a quente no bastidor; Correção da rotina da placa bipolar. Não estava cono não bipolar. 	
	400409V2	28/08/04	64Kx8 70nS	 Correção da limpeza dos estados remanentes; Correção da Instrução AJUST nas interrupções na programação ON-LINE. 	
4004.05T 4004.06T 4004.09T	400409V3	18/10/04	64Kx8 70nS	 Correção da limpeza dos estados internos remanentes; Inclusão da rotina para desligar o 0x00F6 toda varredura; Inclusão da rotina para ligar o 0x00F7 toda varredura; Correção da prioridade nos vetores de interrupção das interrupções de software; Correção da SCL. Incluido o flag de overflow 0x00FF para o calculo de b; Correção da rotina de atualização das Analógicas; Alteração das rotinas de comunicação: Implementação da senha do SUP por canal de comunicação; Implementação do seguimento de comunicação por canal de comunicação; Correção no modulo de comunicação ModBus mestre e escravo; 	
	400409V4	29/10/04	64Kx8 70nS	 Correção na rotina de decodificação da resposta no ModBus mestre, com a implementação de trava no número de bytes; Correção na instrução BMOVX. implementada uma trava no destino. 0x0000 < X < 0xEFFFF. 	

Apêndice D - Resumo das instruções para série MPC4004

A tabela a seguir apresenta os mnemônicos das instruções e sua breve descrição. Maiores detalhes são descritos no "Help" das instruções do aplicativo WinSUP 2.

MNEMÔNICO	DESCRIÇÃO
ADSUB	Soma/subtrai uma constante de conteúdo de registro (Hex)
ADSUD	Soma/subtrai uma constante de conteúdo de registro (Dec)
AND	Operação lógica "E" entre estados internos
ANDN	Operação lógica "E" entre estados internos invertidos
ASCB	Conversor ASCII p/ BCD
BCDAP	Conversão de dados Decimais p/ ASCII com ponto decimal
BCDAS	Conversão de dados Decimais p/ ASCII
BITW	Transfere 16 estados p/um registro de 16 bits
BMOVX	Movimentação de bloco de dados indexados na origem e no destino
CALL	Chamada de sub-rotina
СМР	Compara conteúdo de registros
CNT	Contador
CNT2	Contador 2
CONV	Conversor Dec/Hex ou Hex/Dec
CONVL	Conversor Dec/Hex ou Hex/Dec de 32 bits
CCS	Calcula CHECK SUN (XOR) dos Bytes
CTCPU	Contador Rápido (somente CPU XA)
DINT1	Desabilita interrupção 1 (somente drivers MPC4004R e MPC4004T)
DIV	Divisão Decimal
DIVB	Divisão Hexadecimal
DIVBL	Divisão binária longa (Hexadecimal)
DVBLL	Divisão binária de 32 bits (Hexadecimal)
FATOR	Ajusta o zero e o fundo de escala de uma E.A.
FCMP	Comparação em ponto flutuante (somente CPU XA)
FCONV	Conversão em ponto flutuante (somente CPU XA)
FDIV	Divisão em ponto flutuante (somente CPU XA)
FILT	Filtro
FMUL	Multiplicação em ponto flutuante (somente CPU XA)
FSUB	Subtração em ponto flutuante (somente CPU XA)
FSUM	Soma em ponto flutuante (somente CPU XA)
FTAB	Carregamento de um bloco de dados em ponto flutuante (somente drivers MPC4004R e MPC4004T)
JMP	Salto para endereço de desvio
LD	Começa a operação em uma linha ou bloco com chave (NA)
LDATA	Leitura de dia/mês/ano
LDI	Entrada imediata
LDN	Começa a operação em uma linha ou bloco com chave (NF)
LDX	Começa linha com chave (NA) indexada
LTIME	Leitura de hora/min/seg.
MONOA	Monoestável de uma varredura no acionamento
MONOD	Monoestável de uma varredura no desacionamento
MOV	Copia conteúdo de um registro para outro
MOVK	Carregar valor (constante) em registro
MOVX	MOV indexado no destino
MULT	Multiplicação Decimal
MULTB	Multiplicação Hexadecimal
MULBL	Multiplicação Hexadecimal de 32 bits

MNEMÔNICO	DESCRIÇÃO
OR	Operação lógica "OU" entre estados internos
ORN	Operação lógica "OU" entre estados internos invertidos
OUT	Saída
OUTI	Saída não em fim de linha
OUTIN	Saída invertida não em fim de linha
OUTN	Saída invertida
OUTR	Saída imediata
OUTX	Saída indexada
PID	Bloco PID
PID I	Algoritmo PID padrão ISA
PRINT	Transferência de dados p/interface serial
SCL	Gera uma reta tipo mx+b dados dois pares x, y
SCL2G	Gera uma parábola
SCRLL	Scroll de dados (somente CPU XA)
SDATA	Acerto de dia/mês/ano
SETR	Set/Reset (estado interno)
SFR	Deslocamento de estados internos
SHIFB	Deslocamento de bit
SHIFN	Deslocamento de nibble (4 bits)
SHIFL	Deslocamento de "n" bits
STIME	Acerto de hora/min/seg.
SUB	Subtração Decimal
SUBB	Subtração Hexadecimal
SUBBL	Subtração Hexadecimal de 32 bits
SUM	Soma Decimal
SUMB	Soma Hexadecimal
SUMBL	Soma Hexadecimal de 32 bits
TAB	Carregamento de um bloco de dados
TMR	Temporizador
TXPR	Carrega bloco de mensagens a serem impressas
UPDB	Contador Up/Down Hexadecimal
UPDBC	Incrementa e compara (Hex)
UPDD	Contador Up/Down decimal
UPDDC	Incrementa e compara (Dec)
WAND	AND (bit a bit) do conteúdo de dois registros de 16 bits
WBIT	Transfere os 16 bits de um registro para 16 estados internos
WBITX	WBIT indexado e com auto incremento/decremento
WLDX	MOV indexado na origem
WNOT	Complemento de registro de 16 bits
WOR	OR (bit a bit) do conteúdo de dois registros de 16 bits
WXOR	XOR (bit a bit) do conteúdo de dois registros de 16 bits

PSEUDO-INSTRUÇÕES:

MNEMÔNICO	DESCRIÇÃO
CAV	Contador de Alta Velocidade (CPU)
GAV	Armazenagem e recuperação de conjunto de dados
SYNC	Sincronismo
TMRX	Temporizadores de 1ms

Apêndice E - Descrição do Algoritmo PID

O algoritmo PID utilizado na série MPC4004, pode ser escrito de maneira simplificada, conforme a equação:

S = P + I + D

onde:

S - saída para controle do processo, podendo ser analógica ou do tipo PWM (Pulse Width Modulation).

P - termo proporcional

- I termo integrativo
- D termo derivativo

O algoritmo PID, é a soma dos três elementos, que combinam suas ações, para executar o controle da variável do processo (temperatura).

Ação Proporcional

O controle proporcional mantém uma relação linear entre o valor da variável de Processo e a posição do elemento final de controle.

A magnitude da correção é proporcional à amplitude do desvio, ou seja, a saída do controlador é proporcional ao erro.

Quanto maior for o desvio, maior será a correção do termo proporcional.

A unidade empregada para o driver **MPC4004** será de porcentagem, podendo variar de 0 a 100% o termo proporcional.

O gráfico abaixo oferece uma melhor noção da influência do termo proporcional:

supondo: S = P (controle somente com termo proporcional)

<u>Ação integral</u>

A finalidade da ação integral é eliminar o desvio permanente deixado pela Ação Proporcional, provocando a contínua correção do sinal de saída até que o erro seja eliminado.

A correção é proporcional à integral do erro.

Enquanto existir desvio a saída do controlador irá aumentar ou diminuir, só cessando a variação da saída quando o desvio desaparecer.

O termo integral pode ser expresso como a quantidade de repetições (soma dos erros) ocorridas por unidade de tempo. A unidade empregada para o driver **MPC4004** é repetições/minuto, podendo executar desde 4 a 250 repetições por minuto.

A contribuição do termo integral poderá ser positiva ou negativa, desta forma a soma de P+I poderá alcançar o valor máximo para a saída (100%), ou mínimo (0%), tendo como referência o setpoint.

Ação derivativa

O termo derivativo introduz uma ação corretiva proporcional à velocidade de variação do desvio.

Combinada com a Ação Proporcional faz com que, quando a variável de processo se afasta do setpoint, a saída varie mais do que variaria somente com a Ação P ou P + I.

Por outro lado quando a variável está retornando ao valor original, o Modo Derivativo exerce uma ação contrária, reduzindo as eventuais oscilações. Pode-se dizer que a finalidade da Ação Derivativa é diminuir o tempo de correção do desvio, antecipando a ação corretiva.

A Ação Derivativa é também conhecida por ação antecipatória, e o tempo de antecipação é chamado "tempo derivativo", sendo expresso em minutos.

Definição dos parâmetros da placa de temperatura:

Cada parâmetro a ser configurado possui uma célula a ser preenchida. Abaixo é mostrado os ranges para cada umas das células:

Alarme-Min: 400 a EFFE

Alarme-Max: 400 a EFFE Preset: 400 a EFFE Banda: 0 a 25°C Ks e Kp: 0 a 100 % Ki: 0 a 100 repetições por minuto Kd e Tempo: 2 a 25 segundos

Definição das funções e registros para controle de temperatura:

SET POINT OU PRESET - temperatura programada no controlador, é a temperatura que se quer atingir.

EFETIVO - temperatura lida pelo cartão do CP, temperatura real.

OVER SHOOT - é a maior temperatura registrada, sendo atingida no aquecimento inicial do processo.

DESVIO OU ERRO DO SISTEMA - é a diferença entre o setpoint e o valor efetivo.

BANDA - região onde ocorrerá o controle de temperatura (0 a 25°C). Abaixo da banda as resistências estão ligadas e acima da banda desligadas.

TEMPO - valor em segundos, para cálculo do período da saída PWM (2 a 25 segundos). Desta forma se tivermos um tempo de 4 seg., com uma S = 50%, teremos a saída digital 2 seg. ligada (Ton) e 2 seg. desligada (Toff).

Importante: Caso o cálculo de Ton ou Toff seja menor que 1 seg., será mantido o tempo mínimo de 1 seg. e recalculado o outro termo, para manter a proporcionalidade.

SOFT-START - Tem por finalidade eliminar a umidade das resistências de aquecimento, através do aumento gradativo da temperatura, para evitar choques térmicos que poderiam causar a queima das mesmas.

Assim sendo, até uma temperatura de 100 °C, recomenda-se que não se aplique a máxima potência às resistências de maneira contínua.

Admitindo-se que o tempo do algoritmo PID tenha sido ajustado em 10 seg. e a taxa de aquecimento esteja em 50%, teríamos a saída digital ligada durante 5 seg. e 5 seg. desligada.

A função de Soft-Start, é habilitada individualmente para cada canal, através de estados internos (0068 a 006F).

O valor da porcentagem de energia entregue é representada através do parâmetro **Ks**, o qual assumira valores de 0 a 100%.

ALARME TERMOPAR ABERTO - Caso ocorra à ruptura do elemento sensor ou o mesmo não esteja conectado, será ligado um estado interno a fim de que o usuário possa relacioná-lo a alarmes para o operador.

Os estados internos para alarme de termopar aberto são 0088 a 008F, correspondendo aos canais de 1 a 8 respectivamente. Os mesmos estão sempre ativos.

ALARME TERMOPAR INVERTIDO - Como o termopar gera uma tensão para o cartão do controlador, devemos respeitar a polaridade de conexão (+ -), sob pena de termos leituras decrescentes, ao invés de crescente, quando do aquecimento do sistema.

O alarme de termopar invertido será acionado quando a temperatura de aquecimento for acima do dobro da temperatura ambiente. Assim, se a temperatura ambiente for 20 °C, o alarme de termopar invertido ocorrerá aos 40,1 °C.

Isto ocorre devido à compensação automática da temperatura ambiente, pois só é possível detectar termopar invertido quando entrar tensão negativa no conversor.

Os estados internos para alarme de termopar invertido são 0080 a 0087, correspondendo aos canais de 1 a 8 respectivamente.

CONTROLE DE AQUECIMENTO APÓS RUPTURA DE TERMOPAR (CAART) - Caso ocorra à ruptura do termopar durante o processo, ocorrerá o desligamento do aquecimento, levando o processo à condição de bloqueio.

Com o **CAART** habilitado, após a detecção do termopar aberto, a zona de aquecimento continuará recebendo a mesma quantidade de energia que vinha sendo aplicada, porém fixa.

Desta forma não teremos o desequilíbrio de temperatura em curto prazo, dando condições ao operador de efetuar a troca do termopar. Após solucionar o problema, o controle retornará ao algoritmo.

A função de **CAART** é habilitada individualmente para cada canal através de estados internos (0098 a 009F).

CONTROLE DE OVER SHOOT - É um controle destinado a evitar que a temperatura ultrapasse demasiadamente o preset no aquecimento inicial do sistema.

A função de controle de over shoot é habilitada individualmente para cada canal através de estados internos (0090 a 0097).

PORCENTAGEM DE SAÍDA ON - O usuário poderá mostrar ao operador a porcentagem de energia entregue às resistências, visualizando os registros de 04C0 a 04CF (tanto para soft-start quanto para PID).

O formato mostrado é de 000.0 a 100.0, correspondendo de 0 a 100% de energia.

ALARME DE MÁXIMO - Quando o valor efetivo da temperatura for maior ou igual ao valor máximo especificado, será acionado o estado interno de alarme de máximo.

ALARME DE MÍNIMO - Enquanto o valor efetivo da temperatura for menor que o valor mínimo especificado, será acionado o estado interno de alarme de mínimo.

Importante: Os registros que conterão os valores de mínimo e máximo são definidos no menu de Programação de Presets e Alarmes.

• Valores iniciais de controle

Os valores mostrados abaixo têm sido utilizados em diversas aplicações de controle de temperatura, com resultados satisfatórios.

Recomenda-se partir o sistema com os valores mostrados abaixo, e posteriormente ir ajustando os valores para otimizar o controle.

Set-point:1500 (exemplo de set-point de 150.0 graus)Banda:0250Kp:0080Ki:0050Kd:0050Valor mínimo da saída:0000Valor máximo da saída:1000Tempo:0004Valor inicial somatória do erro:7520